已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Leaf‐density estimation for fruit‐tree canopy based on wind‐excited audio

天蓬 树(集合论) 树冠 激发态 环境科学 计算机科学 园艺 遥感 植物 数学 生物 地理 物理 数学分析 核物理学
作者
Wenwei Li,Shijie Jiang,Shenghui Yang,Fengpeng Han,Weihong Liu,Yongjun Zheng,Tao Yu,Daobilige Su
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22336
摘要

Abstract It is important to obtain real‐time leaf density of fruit‐tree canopies for the precision spray control of plant‐protection robots. However, conventional detection techniques for the characteristics of fruit‐tree canopies cannot acquire the canopy internal information, which may provide an unsatisfactory accuracy of detection of leaf densities. This paper proposes a method for estimating canopy leaf density of fruit trees based on wind‐excited audio. A wind‐exciting implement was used to force fruit‐tree canopy leaves vibrating to produce audio. Then, some correlation analysis methods were used to extract key characteristic parameters of wind‐excited audio that were significantly correlated with leaf density. Finally, based on the data set of wind‐excited audio, a few machine‐learning methods were used to develop leaf‐density estimation models. Test results showed that: (1) there were five key feature parameters of wind‐excited audio that were significantly correlated with leaf density: the short‐time energy, spectral centroid, the frequency average energy, the peak frequency, and the standard deviation of frequency. (2) the estimation model of leaf density developed based on backpropagation neural network for fruit‐tree canopy showed the optimal estimation results, which can achieve the estimation of leaf density of fruit‐tree canopies accurately. The overall correlation coefficient ( R ) of the estimation model was more than 0.84, the root‐mean‐square error was less than 0.73 m 2 m −3 , and the mean absolute error was less than 0.53 m 2 m −3 . This study is expected to provide a technical solution for the leaf‐density detection of fruit‐tree canopies of plant‐protection robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jepsen完成签到 ,获得积分10
3秒前
4秒前
Sunney发布了新的文献求助10
5秒前
搜集达人应助饱满的问丝采纳,获得10
7秒前
小小白发布了新的文献求助20
7秒前
yuqinghui98完成签到 ,获得积分10
8秒前
伯云完成签到,获得积分10
8秒前
8秒前
西西完成签到 ,获得积分10
8秒前
养花低手完成签到 ,获得积分10
9秒前
Jenny发布了新的文献求助10
9秒前
酷波er应助兴奋的菠萝采纳,获得10
9秒前
Chen完成签到 ,获得积分10
10秒前
wanci应助Sunney采纳,获得10
12秒前
程程程发布了新的文献求助10
12秒前
Much完成签到 ,获得积分10
13秒前
13秒前
明理从露完成签到 ,获得积分10
14秒前
善学以致用应助完美楠人采纳,获得10
14秒前
Jasper应助楚昕越采纳,获得10
17秒前
17秒前
21秒前
艾琳克斯完成签到 ,获得积分10
22秒前
善良的冰颜完成签到 ,获得积分10
23秒前
兴奋的菠萝完成签到,获得积分10
24秒前
27秒前
27秒前
一二完成签到 ,获得积分10
30秒前
topsun完成签到,获得积分10
31秒前
31秒前
完美楠人发布了新的文献求助10
32秒前
玛卡巴卡31完成签到,获得积分10
32秒前
冰激凌完成签到,获得积分10
38秒前
38秒前
隐形曼青应助小小白采纳,获得10
40秒前
学术完成签到 ,获得积分10
40秒前
故城完成签到 ,获得积分10
41秒前
ZhangDaying完成签到 ,获得积分10
42秒前
苹果以云完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
François Ravary SJ and a Sino-European Musical Culture in Nineteenth-Century Shanghai 300
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4794063
求助须知:如何正确求助?哪些是违规求助? 4115688
关于积分的说明 12732981
捐赠科研通 3844332
什么是DOI,文献DOI怎么找? 2118936
邀请新用户注册赠送积分活动 1141158
关于科研通互助平台的介绍 1029634