亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Proto–neural networks from thermal proteins

人工神经网络 化学 计算生物学 神经科学 生物物理学 计算机科学 生物 人工智能
作者
Panagiotis Mougkogiannis,Andrew Adamatzky
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:709: 149725-149725 被引量:12
标识
DOI:10.1016/j.bbrc.2024.149725
摘要

Proteinoids are synthetic polymers that have structural similarities to natural proteins, and their formation is achieved through the application of heat to amino acid combinations in a dehydrated environment. The thermal proteins, initially synthesised by Sidney Fox during the 1960s, has the ability to undergo self-assembly, resulting in the formation of microspheres that resemble cells. These microspheres have fascinating biomimetic characteristics. In recent studies, substantial advancements have been made in elucidating the electrical signalling phenomena shown by proteinoids, hence showcasing their promising prospects in the field of neuro-inspired computing. This study demonstrates the advancement of experimental prototypes that employ proteinoids in the construction of fundamental neural network structures. The article provides an overview of significant achievements in proteinoid systems, such as the demonstration of electrical excitability, emulation of synaptic functions, capabilities in pattern recognition, and adaptability of network structures. This study examines the similarities and differences between proteinoid networks and spontaneous neural computation. We examine the persistent challenges associated with deciphering the underlying mechanisms of emergent proteinoid-based intelligence. Additionally, we explore the potential for developing bio-inspired computing systems using synthetic thermal proteins in forthcoming times. The results of this study offer a theoretical foundation for the advancement of adaptive, self-assembling electronic systems that operate using artificial bio-neural principles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
白华苍松发布了新的文献求助10
8秒前
15秒前
TZMY发布了新的文献求助10
19秒前
yuon完成签到,获得积分10
22秒前
24秒前
24秒前
nessa完成签到 ,获得积分10
26秒前
Criminology34应助de采纳,获得10
30秒前
慕青应助核桃采纳,获得10
38秒前
在水一方应助核桃采纳,获得10
38秒前
shhoing应助核桃采纳,获得10
38秒前
上官若男应助核桃采纳,获得10
38秒前
共享精神应助核桃采纳,获得10
38秒前
njxray发布了新的文献求助10
40秒前
李健的小迷弟应助核桃采纳,获得10
42秒前
爆米花应助核桃采纳,获得10
42秒前
CodeCraft应助核桃采纳,获得10
42秒前
希望天下0贩的0应助核桃采纳,获得10
42秒前
852应助核桃采纳,获得10
42秒前
junlin应助核桃采纳,获得10
42秒前
星星亮应助核桃采纳,获得10
43秒前
搜集达人应助核桃采纳,获得10
43秒前
在水一方应助核桃采纳,获得10
43秒前
慕青应助核桃采纳,获得10
43秒前
46秒前
46秒前
在水一方应助核桃采纳,获得10
49秒前
小二郎应助核桃采纳,获得10
49秒前
Owen应助核桃采纳,获得10
49秒前
在水一方应助核桃采纳,获得20
49秒前
可爱的函函应助核桃采纳,获得10
50秒前
英姑应助核桃采纳,获得10
50秒前
香蕉觅云应助核桃采纳,获得10
50秒前
JamesPei应助核桃采纳,获得10
50秒前
李爱国应助核桃采纳,获得30
50秒前
大龙哥886应助核桃采纳,获得10
50秒前
50秒前
量子星尘发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538641
求助须知:如何正确求助?哪些是违规求助? 4625711
关于积分的说明 14596757
捐赠科研通 4566378
什么是DOI,文献DOI怎么找? 2503216
邀请新用户注册赠送积分活动 1481345
关于科研通互助平台的介绍 1452701