Physics-informed neural networks for transonic flow around a cylinder with high Reynolds number

雷诺平均Navier-Stokes方程 跨音速 物理 欧拉方程 无粘流 雷诺数 边界层 机械 计算流体力学 湍流 空气动力学 量子力学
作者
Xiang Ren,Peng Hu,Hua Su,Feizhou Zhang,Huahua Yu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:31
标识
DOI:10.1063/5.0200384
摘要

The physics-informed neural network (PINN) method is extended to learn and predict compressible steady-state aerodynamic flows with a high Reynolds number. To better learn the thin boundary layer, the sampling distance function and hard boundary condition are explicitly introduced into the input and output layers of the deep neural network, respectively. A gradient weight factor is considered in the loss function to implement the PINN methods based on the Reynolds averaged Navier–Stokes (RANS) and Euler equations, respectively, denoted as PINN–RANS and PINN–Euler. Taking a transonic flow around a cylinder as an example, these PINN methods are first verified for the ability to learn complex flows and then are applied to predict the global flow based on a part of physical data. When predicting the global flow based on velocity data in local key regions, the PINN–RANS method can always accurately predict the global flow field including the boundary layer and wake, while the PINN–Euler method can accurately predict the inviscid region. When predicting the subsonic and transonic flows under different freestream Mach numbers (Ma∞= 0.3–0.7), the flow fields predicted by both methods avoid the inconsistency with the real physical phenomena of the pure data-driven method. The PINN–RANS method is insufficient in shock identification capabilities. Since the PINN–Euler method does not need the second derivative, the training time of PINN–Euler is only 1/3 times that of PINN–RANS at the same sampling point and deep neural network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浮游应助吹又生采纳,获得10
9秒前
刚子完成签到 ,获得积分10
10秒前
害怕的小刺猬完成签到 ,获得积分10
10秒前
月岛完成签到 ,获得积分10
14秒前
unowhoiam完成签到 ,获得积分10
15秒前
飞云完成签到 ,获得积分10
16秒前
吹又生完成签到,获得积分10
17秒前
阳光醉山完成签到 ,获得积分10
21秒前
28秒前
她的城完成签到,获得积分0
30秒前
31秒前
qiaoqiao完成签到,获得积分10
32秒前
hute完成签到 ,获得积分10
33秒前
33秒前
NexusExplorer应助humorlife采纳,获得20
34秒前
李大胖胖完成签到 ,获得积分10
35秒前
38秒前
萧萧应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
lina完成签到 ,获得积分10
40秒前
梁栋应助科研通管家采纳,获得10
40秒前
萧萧应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
今后应助科研通管家采纳,获得10
40秒前
赘婿应助科研通管家采纳,获得10
40秒前
Maestro_S应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
Maestro_S应助科研通管家采纳,获得10
41秒前
梁栋应助科研通管家采纳,获得10
41秒前
blackddl应助阿俊1212采纳,获得10
42秒前
陈的住气完成签到 ,获得积分10
44秒前
大胆帮帮主完成签到,获得积分10
45秒前
54秒前
土拨鼠完成签到 ,获得积分10
1分钟前
rlclx发布了新的文献求助10
1分钟前
WeihaoJin完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559