From Experience to Adoption: Modelling EFL Learners' GenAI Continuance Through Linear and Configurational Approaches

连续性 心理学 数学教育 计算机科学 多媒体 营销 业务 社会心理学
作者
Liwei Hsu
出处
期刊:European Journal of Education [Wiley]
卷期号:60 (2) 被引量:1
标识
DOI:10.1111/ejed.70108
摘要

ABSTRACT As generative artificial intelligence (GenAI) increasingly penetrates language education, understanding learners' continued intention to use this technology becomes crucial. This study examines EFL learners' continuance intention to use GenAI for language learning through PLS‐SEM and fsQCA methodologies. Participants were undergraduate EFL learners ( N = 383) from three universities in Taiwan, aged 18–24, with varying English proficiency levels (TOEIC 450–860 or CEFR A2‐B2). Data were collected through an online survey comprising validated scales measuring technology acceptance constructs and personality traits using 5‐point Likert scales. Analysis employed both partial least squares structural equation modelling (PLS‐SEM) and fuzzy‐set qualitative comparative analysis (fsQCA). Results showed that three key dimensions – dependability, attractiveness and novelty – shape users' overall experience with GenAI, where dependability and attractiveness specifically align with users' initial expectations. Both expectancy confirmation and social influence predict learners' continuance intention. Openness to experience moderates these relationships positively for expectancy confirmation but negatively for social influence, indicating that individuals with high openness prioritise personal evaluation over social cues. As the first study to combine PLS‐SEM with fsQCA in GenAI use research, it reveals complementary insights: while PLS‐SEM identifies key predictors of continued use, fsQCA uncovers multiple pathways to adoption, with dependability and social influence as core conditions across configurations. This dual‐method approach advances theoretical understanding of technology adoption by demonstrating how linear relationships coexist with complex configurational patterns. The findings provide practical implications for educational technology design, emphasising the need to balance system reliability and aesthetic appeal while accounting for individual differences in user personality traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
王晓康发布了新的文献求助10
3秒前
4秒前
6秒前
万能图书馆应助荼蘼采纳,获得10
9秒前
余悲也白发布了新的文献求助10
10秒前
WJM完成签到,获得积分10
11秒前
Rein发布了新的文献求助10
11秒前
11秒前
我就想看看文献完成签到 ,获得积分0
13秒前
有足量NaCl完成签到,获得积分10
14秒前
painx发布了新的文献求助10
15秒前
15秒前
16秒前
无花果应助有足量NaCl采纳,获得10
16秒前
执着的冬瓜完成签到 ,获得积分10
17秒前
Shaynin完成签到,获得积分10
17秒前
安详的白山完成签到,获得积分10
18秒前
穆雨完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
22秒前
22秒前
王晓康完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
我是老大应助11122采纳,获得10
23秒前
舒心的青亦完成签到 ,获得积分10
23秒前
今后应助余悲也白采纳,获得10
24秒前
冷静访梦发布了新的文献求助10
25秒前
文静冥发布了新的文献求助10
25秒前
25秒前
TaoJ应助火星上初柳采纳,获得10
25秒前
代何完成签到,获得积分10
26秒前
26秒前
活力鸡完成签到 ,获得积分10
26秒前
xiaoyu发布了新的文献求助10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
Mechanics of Composite Strengthening 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176561
求助须知:如何正确求助?哪些是违规求助? 3711805
关于积分的说明 11705482
捐赠科研通 3394659
什么是DOI,文献DOI怎么找? 1862401
邀请新用户注册赠送积分活动 921170
科研通“疑难数据库(出版商)”最低求助积分说明 833040