亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated quality control of T1-weighted brain MRI scans for clinical research datasets: methods comparison and design of a quality prediction classifier

分类器(UML) 计算机科学 人工智能 模式识别(心理学) 质量(理念) 数据挖掘 机器学习 哲学 认识论
作者
Gaurav Bhalerao,Grace Gillis,M Dembélé,Sana Suri,Klaus P. Ebmeier,Johannes Klein,Joshua Shulman,Clare E. Mackay,Ludovica Griffanti
标识
DOI:10.1162/imag.a.4
摘要

Abstract T1-weighted (T1w) MRI is widely used in clinical neuroimaging for studying brain structure and its changes, including those related to neurodegenerative diseases, and as anatomical reference for analysing other modalities. Ensuring high-quality T1w scans is vital as image quality affects reliability of outcome measures. However, visual inspection can be subjective and time consuming, especially with large datasets. The effectiveness of automated quality control (QC) tools for clinical cohorts remains uncertain. In this study, we used T1w scans from elderly participants within ageing and clinical populations to test the accuracy of existing QC tools with respect to visual QC and to establish a new quality prediction framework for clinical research use. Four datasets acquired from multiple scanners and sites were used (N = 2438, 11 sites, 39 scanner manufacturer models, 3 field strengths—1.5T, 3T, 2.9T, patients and controls, average age 71 ± 8 years). All structural T1w scans were processed with two standard automated QC pipelines (MRIQC and CAT12). The agreement of the accept–reject ratings was compared between the automated pipelines and with visual QC. We then designed a quality prediction framework that combines the QC measures from the existing automated tools and is trained on clinical research datasets. We tested the classifier performance using cross-validation on data from all sites together, also examining the performance across diagnostic groups. We then tested the generalisability of our approach when leaving one site out and explored how well our approach generalises to data from a different scanner manufacturer and/or field strength from those used for training, as well as on an unseen new dataset of healthy young participants with movement-related artefacts. Our results show significant agreement between automated QC tools and visual QC (Kappa = 0.30 with MRIQC predictions; Kappa = 0.28 with CAT12’s rating) when considering the entire dataset, but the agreement was highly variable across datasets. Our proposed robust undersampling boost (RUS) classifier achieved 87.7% balanced accuracy on the test data combined from different sites (with 86.6% and 88.3% balanced accuracy on scans from patients and controls, respectively). This classifier was also found to be generalisable on different combinations of training and test datasets (average balanced accuracy of leave-one-site-out = 78.2%; exploratory models on field strengths and manufacturers = 77.7%; movement-related artefact dataset when including 1% scans in the training = 88.5%). While existing QC tools may not be robustly applicable to datasets comprising older adults, they produce quality metrics that can be leveraged to train more robust quality control classifiers for ageing and clinical cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
4秒前
aaaa发布了新的文献求助10
7秒前
麻瓜完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
14秒前
shinn发布了新的文献求助10
16秒前
科研通AI6.1应助aaaa采纳,获得10
17秒前
李琪发布了新的文献求助10
17秒前
闰土完成签到 ,获得积分10
19秒前
merry6669发布了新的文献求助10
21秒前
华仔应助chenchunli采纳,获得10
32秒前
noneface完成签到,获得积分10
34秒前
BYGYHQ完成签到 ,获得积分10
35秒前
领导范儿应助shinn采纳,获得10
36秒前
科研通AI6.1应助北宸采纳,获得10
39秒前
42秒前
科研通AI6.1应助js采纳,获得10
43秒前
嘻嘻完成签到 ,获得积分10
44秒前
44秒前
46秒前
46秒前
47秒前
50秒前
51秒前
shinn发布了新的文献求助10
51秒前
岂曰无衣发布了新的文献求助10
52秒前
YHYY完成签到,获得积分20
56秒前
梁梁完成签到 ,获得积分10
57秒前
57秒前
57秒前
chenchunli完成签到,获得积分20
58秒前
58秒前
CipherSage应助yyy采纳,获得10
59秒前
59秒前
华仔应助shinn采纳,获得10
59秒前
Rita应助科研通管家采纳,获得10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772179
求助须知:如何正确求助?哪些是违规求助? 5596564
关于积分的说明 15429271
捐赠科研通 4905254
什么是DOI,文献DOI怎么找? 2639292
邀请新用户注册赠送积分活动 1587214
关于科研通互助平台的介绍 1542061