MSDUNet:A Model based on Feature Multi-Scale and Dual-input Dynamic Enhancement for Skin Lesion Segmentation

分割 人工智能 特征(语言学) 计算机科学 对偶(语法数字) 计算机视觉 图像分割 比例(比率) 模式识别(心理学) 尺度空间分割 艺术 哲学 语言学 物理 文学类 量子力学
作者
Xiaosen Li,Linli Li,Xinlong Xing,Huixian Liao,Wenji Wang,Qingfeng Dong,Xiao Qin,Changan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3549011
摘要

Melanoma is a malignant tumor originating from the lesions of skin cells. Medical image segmentation tasks for skin lesion play a crucial role in quantitative analysis. Achieving precise and efficient segmentation remains a significant challenge for medical practitioners. Hence, a skin lesion segmentation model named MSDUNet, which incorporates multi-scale deformable block (MSD Block) and dual-input dynamic enhancement module(D2M), is proposed. Firstly, the model employs a hybrid architecture encoder that better integrates global and local features. Secondly, to better utilize macroscopic and microscopic multiscale information, improvements are made to skip connection and decoder block, introducing D2M and MSD Block. The D2M leverages large kernel dilated convolution to draw out attention bias matrix on the decoder features, supplementing and enhancing the semantic features of the decoder's lower layers transmitted through skip connection features, thereby compensating semantic gaps. The MSD Block uses channel-wise split and deformable convolutions with varying receptive fields to better extract and integrate multi-scale information while controlling the model's size, enabling the decoder to focus more on task-relevant regions and edge details. MSDUNet attains outstanding performance with Dice scores of 93.08% and 91.68% on the ISIC-2016 and ISIC-2018 datasets, respectively. Furthermore, experiments on the HAM10000 dataset demonstrate its superior performance with a Dice score of 95.40%. External validation experiments based on the ISIC-2016, ISIC-2018, and HAM10000 experimental weights on the PH2 dataset yield Dice scores of 92.67%, 92.31%, and 93.46%, respectively, showcasing the exceptional generalization capability of MSDUNet. Our code implementation is publicly available at the Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘如发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
科研通AI2S应助徐晓婧采纳,获得60
6秒前
cs完成签到 ,获得积分10
7秒前
9秒前
rush完成签到,获得积分10
11秒前
13秒前
文艺鹰完成签到,获得积分10
13秒前
15秒前
orixero应助张张采纳,获得10
16秒前
Z赵完成签到 ,获得积分10
16秒前
顾矜应助阳光的蜜蜂啊采纳,获得10
18秒前
学勾巴发布了新的文献求助10
18秒前
12完成签到,获得积分20
19秒前
xx发布了新的文献求助10
21秒前
lxcy0612发布了新的文献求助10
22秒前
旅行者完成签到 ,获得积分10
24秒前
智海瑞完成签到,获得积分10
25秒前
搞怪的香菇完成签到,获得积分10
25秒前
Layover完成签到 ,获得积分10
27秒前
小刘完成签到,获得积分10
28秒前
小蘑菇应助终生科研徒刑采纳,获得10
28秒前
耐斯糖完成签到 ,获得积分10
30秒前
爆米花应助雪满头采纳,获得10
31秒前
Ran完成签到 ,获得积分10
31秒前
阿湛完成签到,获得积分10
32秒前
子春完成签到 ,获得积分10
34秒前
tom关注了科研通微信公众号
34秒前
team完成签到,获得积分10
36秒前
07关注了科研通微信公众号
36秒前
隐形曼青应助学勾巴采纳,获得10
37秒前
科研通AI5应助胡萝卜叶子采纳,获得10
38秒前
Akim应助xx采纳,获得10
40秒前
LDDDGR发布了新的文献求助10
45秒前
Orange应助cookie486采纳,获得10
47秒前
zks完成签到,获得积分10
48秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843