MSDUNet:A Model based on Feature Multi-Scale and Dual-input Dynamic Enhancement for Skin Lesion Segmentation

分割 人工智能 特征(语言学) 计算机科学 对偶(语法数字) 计算机视觉 图像分割 比例(比率) 模式识别(心理学) 尺度空间分割 艺术 哲学 语言学 物理 文学类 量子力学
作者
Xiaosen Li,Linli Li,Xinlong Xing,Huixian Liao,Wenji Wang,Qingfeng Dong,Xiao Qin,Changan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3549011
摘要

Melanoma is a malignant tumor originating from the lesions of skin cells. Medical image segmentation tasks for skin lesion play a crucial role in quantitative analysis. Achieving precise and efficient segmentation remains a significant challenge for medical practitioners. Hence, a skin lesion segmentation model named MSDUNet, which incorporates multi-scale deformable block (MSD Block) and dual-input dynamic enhancement module(D2M), is proposed. Firstly, the model employs a hybrid architecture encoder that better integrates global and local features. Secondly, to better utilize macroscopic and microscopic multiscale information, improvements are made to skip connection and decoder block, introducing D2M and MSD Block. The D2M leverages large kernel dilated convolution to draw out attention bias matrix on the decoder features, supplementing and enhancing the semantic features of the decoder's lower layers transmitted through skip connection features, thereby compensating semantic gaps. The MSD Block uses channel-wise split and deformable convolutions with varying receptive fields to better extract and integrate multi-scale information while controlling the model's size, enabling the decoder to focus more on task-relevant regions and edge details. MSDUNet attains outstanding performance with Dice scores of 93.08% and 91.68% on the ISIC-2016 and ISIC-2018 datasets, respectively. Furthermore, experiments on the HAM10000 dataset demonstrate its superior performance with a Dice score of 95.40%. External validation experiments based on the ISIC-2016, ISIC-2018, and HAM10000 experimental weights on the PH2 dataset yield Dice scores of 92.67%, 92.31%, and 93.46%, respectively, showcasing the exceptional generalization capability of MSDUNet. Our code implementation is publicly available at the Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙五六发布了新的文献求助10
1秒前
DaLu完成签到,获得积分10
1秒前
1秒前
吴真好完成签到,获得积分10
1秒前
天真跳跳糖关注了科研通微信公众号
2秒前
研友_VZG7GZ应助思敏采纳,获得10
2秒前
小蘑菇应助支问凝采纳,获得10
2秒前
甜甜发布了新的文献求助10
4秒前
酷波er应助小白采纳,获得10
4秒前
小兔叽完成签到,获得积分10
4秒前
有志青年发布了新的文献求助10
4秒前
6秒前
6秒前
科研通AI2S应助zxd采纳,获得10
6秒前
LEMONS应助虚心的静枫采纳,获得10
6秒前
与月同行完成签到,获得积分10
7秒前
7秒前
善学以致用应助FK7采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
李爱国应助诚心谷南采纳,获得10
7秒前
今后应助宫雨晴采纳,获得10
8秒前
8秒前
You完成签到,获得积分10
9秒前
9秒前
TANGTANG发布了新的文献求助10
10秒前
10秒前
熊小子爱学习完成签到,获得积分10
10秒前
11秒前
11秒前
记录吐吐发布了新的文献求助10
11秒前
11秒前
随意完成签到,获得积分10
12秒前
Abby完成签到,获得积分10
12秒前
liz完成签到 ,获得积分10
12秒前
ZZY完成签到,获得积分20
12秒前
yoyo发布了新的文献求助10
13秒前
龙雾发布了新的文献求助10
13秒前
15秒前
yznfly应助gshsj采纳,获得30
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609