清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bioinformatics Approach to Identifying Molecular Targets of Isoliquiritigenin Affecting Chronic Obstructive Pulmonary Disease: A Machine Learning Pharmacology Study

异甘草素 肺病 药理学 医学 疾病 生物信息学 计算生物学 内科学 生物
作者
Sha Huang,Lulu Zhang,Xiaoju Liu
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:26 (8): 3907-3907
标识
DOI:10.3390/ijms26083907
摘要

To identify the molecular targets and possible mechanisms of isoliquiritigenin (ISO) in affecting chronic obstructive pulmonary disease (COPD) by regulating the glycolysis and phagocytosis of alveolar macrophages (AM). Datasets GSE130928 and GSE13896 were downloaded from the Gene Expression Omnibus (GEO) database. Genes related to glycolysis and phagocytosis phenotypes were obtained from the GeneCards and MSigDB databases, respectively. Weighted gene co-expression network analysis (WGCNA) and differential analysis were conducted on GSE130928 to identify potential target genes for COPD (gene list 1). ISO target genes were gathered from the Traditional Chinese Medicine System Pharmacology (TCMSP) database, as well as the Comparative Toxicogenomic Database (CTD) and PubChem databases (gene list 2). COPD-related targets were gathered from the CTD and GeneCards databases, and the predicted targets of COPD were obtained by taking the intersection of these sources (gene list 3). From the three gene lists, key pathways were identified. The protein-protein interaction (PPI) network was created by extracting the common genes found in all key pathways and ISO targets. Candidate therapeutic targets were identified using the Minimum Common Oncology Data Element (MCODE) algorithm. These targets were then intersected with glycolysis and phagocytic phenotype-associated genes. The resulting intersection underwent further screening using eight distinct machine learning methods to identify phenotype-related key therapeutic targets. Clinical diagnostic evaluations-including nomogram analysis, receiver operating characteristic (ROC) analysis, correlation studies, and inter-group expression comparisons-were subsequently performed on these key targets. The research findings were validated using the independent dataset GSE13896. Additionally, gene set enrichment analysis (GSEA) was conducted to explore their functional relevance. Immune cell profiling was performed using mRNA expression data from AM in COPD patients. Molecular docking was then carried out to predict interactions between ISO and the identified key target genes. Differential expression analysis and WGCNA module analysis identified a total of 890 potential targets for COPD. Additionally, 3265 predicted targets for COPD were obtained through the intersection of two disease databases. Database searches also yielded 142 targets for ISO. Enrichment analysis identified 20 key pathways, from which three key targets (AKT1, IFNG, and JUN) were ultimately selected based on their overlap with enriched genes, ISO targets, and glycolysis- and phagocytosis-related genes. They were also validated using external datasets. Further analysis of signaling pathways and immune cell profiles highlighted the influence of immune infiltration in COPD and underscored the critical role of macrophages in disease pathology. Molecular docking simulations predicted the binding interactions between ISO and the three key targets. AKT1, IFNG, and JUN may be the key targets of ISO in regulating glycolysis and phagocytosis to affect COPD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
tiantian0518完成签到 ,获得积分10
11秒前
minnie完成签到 ,获得积分10
14秒前
maolao发布了新的文献求助10
15秒前
赛韓吧完成签到 ,获得积分10
16秒前
科研通AI5应助lgs采纳,获得10
21秒前
耕牛热发布了新的文献求助10
29秒前
maolao完成签到,获得积分20
33秒前
33秒前
Jackcaosky完成签到 ,获得积分10
37秒前
bill完成签到,获得积分10
39秒前
耕牛热完成签到,获得积分10
50秒前
左右是个疯子完成签到,获得积分10
53秒前
53秒前
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
wuyan204完成签到 ,获得积分10
1分钟前
xaopng完成签到,获得积分10
1分钟前
Axs发布了新的文献求助200
1分钟前
1分钟前
肝胆外科医生完成签到,获得积分10
1分钟前
Axs完成签到,获得积分10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
畅快城发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
pinyu品余发布了新的文献求助10
1分钟前
文艺的初南完成签到 ,获得积分10
1分钟前
2分钟前
扁舟灬发布了新的文献求助10
2分钟前
1250241652完成签到,获得积分10
2分钟前
黄黄完成签到,获得积分10
2分钟前
2分钟前
huiluowork完成签到 ,获得积分10
2分钟前
科研通AI5应助扁舟灬采纳,获得10
2分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
人工智能基础与应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372815
关于积分的说明 10475459
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702234
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101