Real-Time Rolling Stock and Timetable Rescheduling in Urban Rail Transit Systems

库存(枪支) 计算机科学 运筹学 运输工程 交通系统 轨道交通 过境时间 过境(卫星) 工程类 公共交通 机械工程
作者
Jiateng Yin,Lixing Yang,Zhe Liang,Andrea D’Ariano,Ziyou Gao
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0391
摘要

Unexpected disruptions in urban rail transit systems cause the infeasibility of the initial train schedule and delays or cancelations of a lot of trains. Even though some recent studies begun to address the rolling stock and timetable optimization problem (RSTO), there is still a large gap between theoretical models and practical applications due to the real-time requirements of train rescheduling decisions. In this work, we first model RSTO using a path-based formulation, in which each path refers to a spatial-temporal trajectory of a rescheduled train in the considered network. The optimal set of paths can minimize the expected cost of train cancelation and train delay time. Our formulation also considers a series of operational constraints, such as train headway constraints, short-turning constraints and rolling stock constraints. We develop an efficient branch-and-price framework that decomposes the problem into a restricted master problem and a set of pricing subproblems, where we iteratively generate promising paths with negative reduce costs. We show that each subproblem is a resource-constrained shortest path problem and can be solved efficiently by an improved label setting algorithm by proving its optimality conditions. We compare the tightness of our new path-based formulation with state-of-art formulations and test our branch-and-price approach on real-world instances from Beijing rail transit. The results show that our approach can generate near-optimal solutions in less than three minutes with small duality gap, which evidently outperforms existing formulations and fulfills the requirement of rail managers in practical applications. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72288101 and 72322022]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0391 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0391 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
还不错完成签到,获得积分10
刚刚
清爽鸡翅发布了新的文献求助10
刚刚
时差发布了新的文献求助10
1秒前
1秒前
1秒前
YJH完成签到,获得积分10
2秒前
G浅浅发布了新的文献求助10
2秒前
ccboom发布了新的文献求助10
2秒前
慕青应助俊逸慕山采纳,获得10
2秒前
大胆的小懒猪完成签到,获得积分10
3秒前
赖晨靓完成签到 ,获得积分10
4秒前
Rocky完成签到 ,获得积分10
4秒前
清城完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
Liooo发布了新的文献求助10
6秒前
6秒前
田様应助hylimeng采纳,获得10
6秒前
靓丽不评发布了新的文献求助30
6秒前
勤奋隶应助GUANG采纳,获得10
8秒前
fc小肥杨完成签到,获得积分10
8秒前
要开心完成签到,获得积分10
8秒前
情殇完成签到,获得积分20
8秒前
科研通AI5应助chara采纳,获得10
9秒前
邓博发布了新的文献求助10
9秒前
清爽鸡翅完成签到 ,获得积分20
9秒前
10秒前
10秒前
落尘完成签到,获得积分10
11秒前
天天快乐应助TsCl17采纳,获得10
11秒前
Oying完成签到,获得积分10
11秒前
萌酱完成签到,获得积分10
11秒前
小希完成签到,获得积分10
12秒前
于歓发布了新的文献求助10
12秒前
12秒前
科研通AI5应助pbj采纳,获得10
12秒前
隐形曼青应助pbj采纳,获得10
12秒前
花花发布了新的文献求助10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926