Quality management in supply chain: Strategic implications and the paradox of AI inspection

供应链 供应链管理 业务 质量(理念) 运营管理 过程管理 产业组织 计算机科学 营销 经济 哲学 认识论
作者
Jun Pei,Ruiqi Wang,Yan Ping,Yinliang Tan
出处
期刊:Decision Sciences [Wiley]
标识
DOI:10.1111/deci.70003
摘要

Abstract Artificial intelligence (AI) has transformed the quality control process with AI inspection technology, which reduces the need for costly physical resources and mitigates retail returns. Despite its revolutionizing impact on supply chain quality management, there is a notable gap in research on the implications of a manufacturer's adoption of AI inspection. This article addresses this gap by presenting a two‐stage model that explores the consequences of AI inspection adoption for a downstream manufacturer and an upstream supplier. Our results show that higher AI‐based inspection accuracy may not always benefit the manufacturer. This is because when the supplier's traditional inspection accuracy falls within an immediate range, the manufacturer's incentive to improve AI inspection accuracy diminishes, and the positive effect of AI inspection on retail returns cannot fully offset the technology expense. Moreover, our study explores the dynamics of technology‐sharing strategies between the manufacturer and supplier. Despite potential revenue gains, the manufacturer may hesitate to share technology due to the risk of increased defective products with lower AI inspection accuracy, leading to a paradox where profitability coexists with losses. Surprisingly, the successful collaborative technology‐sharing strategy may paradoxically lead to reduced technology investment. This occurs because technology‐sharing enables significant marginal cost savings in retail returns, rendering the manufacturer to achieve a comparable inspection level with lower investment. Overall, this research highlights that adopting AI inspection does not guarantee benefits for the supply chain members and can sometimes be detrimental. Our study offers strategic guidance for decision‐makers in supply chain quality management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助西柚采纳,获得10
1秒前
北方发布了新的文献求助10
1秒前
iNk应助复杂的凌瑶采纳,获得20
1秒前
2秒前
科目三应助zhu采纳,获得10
2秒前
HHHHH发布了新的文献求助10
3秒前
4秒前
糊里糊涂发布了新的文献求助10
4秒前
4秒前
我是老大应助onedowmsk采纳,获得10
4秒前
一一发布了新的文献求助10
5秒前
5秒前
姜梨完成签到 ,获得积分10
5秒前
1874完成签到,获得积分10
6秒前
6秒前
zzzx完成签到,获得积分10
6秒前
记录吐吐发布了新的文献求助10
7秒前
7秒前
嗬包蛋发布了新的文献求助10
8秒前
huangjing发布了新的文献求助10
8秒前
霸气的水彤应助映城采纳,获得50
9秒前
Iq完成签到,获得积分10
10秒前
weidongwu发布了新的文献求助10
10秒前
wangfei发布了新的文献求助10
10秒前
大个应助Bigheart贝卡斯采纳,获得10
10秒前
10秒前
BBIBBI发布了新的文献求助10
11秒前
英俊的铭应助AlexLXJ采纳,获得10
12秒前
赎罪完成签到 ,获得积分10
13秒前
chloe发布了新的文献求助10
13秒前
桐桐应助乐观寄真采纳,获得10
14秒前
yoimiya完成签到,获得积分10
15秒前
咩咩完成签到,获得积分10
15秒前
15秒前
15秒前
打打应助成就的笑翠采纳,获得10
15秒前
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4115475
求助须知:如何正确求助?哪些是违规求助? 3653923
关于积分的说明 11570608
捐赠科研通 3357628
什么是DOI,文献DOI怎么找? 1844380
邀请新用户注册赠送积分活动 910102
科研通“疑难数据库(出版商)”最低求助积分说明 826716