Quality management in supply chain: Strategic implications and the paradox of AI inspection

供应链 供应链管理 业务 质量(理念) 运营管理 过程管理 产业组织 计算机科学 营销 经济 哲学 认识论
作者
Jun Pei,Ruiqi Wang,Yan Ping,Yinliang Tan
出处
期刊:Decision Sciences [Wiley]
卷期号:56 (5): 509-526 被引量:3
标识
DOI:10.1111/deci.70003
摘要

Abstract Artificial intelligence (AI) has transformed the quality control process with AI inspection technology, which reduces the need for costly physical resources and mitigates retail returns. Despite its revolutionizing impact on supply chain quality management, there is a notable gap in research on the implications of a manufacturer's adoption of AI inspection. This article addresses this gap by presenting a two‐stage model that explores the consequences of AI inspection adoption for a downstream manufacturer and an upstream supplier. Our results show that higher AI‐based inspection accuracy may not always benefit the manufacturer. This is because when the supplier's traditional inspection accuracy falls within an immediate range, the manufacturer's incentive to improve AI inspection accuracy diminishes, and the positive effect of AI inspection on retail returns cannot fully offset the technology expense. Moreover, our study explores the dynamics of technology‐sharing strategies between the manufacturer and supplier. Despite potential revenue gains, the manufacturer may hesitate to share technology due to the risk of increased defective products with lower AI inspection accuracy, leading to a paradox where profitability coexists with losses. Surprisingly, the successful collaborative technology‐sharing strategy may paradoxically lead to reduced technology investment. This occurs because technology‐sharing enables significant marginal cost savings in retail returns, rendering the manufacturer to achieve a comparable inspection level with lower investment. Overall, this research highlights that adopting AI inspection does not guarantee benefits for the supply chain members and can sometimes be detrimental. Our study offers strategic guidance for decision‐makers in supply chain quality management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyx完成签到,获得积分10
刚刚
1秒前
1秒前
木印天完成签到,获得积分10
1秒前
在水一方应助黄河鲤鱼儿采纳,获得10
1秒前
2秒前
顺gsp完成签到 ,获得积分10
2秒前
静静完成签到,获得积分10
2秒前
刻苦的绿真完成签到 ,获得积分10
2秒前
nicolaslcq发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Lucas应助jh采纳,获得10
3秒前
xuhandi发布了新的文献求助10
4秒前
4秒前
小神仙完成签到 ,获得积分10
4秒前
枫叶完成签到 ,获得积分10
4秒前
5秒前
pen完成签到 ,获得积分10
5秒前
5秒前
dyy发布了新的文献求助30
5秒前
6秒前
7秒前
li发布了新的文献求助10
7秒前
Gxy发布了新的文献求助10
7秒前
7秒前
Literaturecome完成签到,获得积分10
7秒前
陈大浩浩发布了新的文献求助10
7秒前
怡然雁风发布了新的文献求助10
7秒前
8秒前
闾丘曼安完成签到,获得积分10
8秒前
不爱学习完成签到 ,获得积分10
8秒前
贝林厄姆发布了新的文献求助10
8秒前
9秒前
我是老大应助lc采纳,获得10
10秒前
善学以致用应助caleb采纳,获得10
10秒前
rubyyuan8006发布了新的文献求助10
10秒前
wanci应助隐形芹采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526379
求助须知:如何正确求助?哪些是违规求助? 4616552
关于积分的说明 14554107
捐赠科研通 4554702
什么是DOI,文献DOI怎么找? 2496037
邀请新用户注册赠送积分活动 1476414
关于科研通互助平台的介绍 1448010