QMIX-GNN: A Graph Neural Network-Based Heterogeneous Multi-Agent Reinforcement Learning Model for Improved Collaboration and Decision-Making

计算机科学 强化学习 人工智能 人工神经网络
作者
Taiyin Zhao,Tian Chen,Dan Mu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (7): 3794-3794
标识
DOI:10.3390/app15073794
摘要

In multi-agent reinforcement learning, the fully centralized approach suffers from issues such as explosion of the joint state and action spaces, leading to performance degradation. On the other hand, the fully decentralized approach relies on agents that focus solely on maximizing their own rewards, making effective collaboration difficult and complicating adaption to scenarios that require cooperation among multiple agents. The Centralized Training and Decentralized Execution (CTDE) framework combines both fully centralized and fully decentralized approaches. During the training phase, a virtual central node receives the observations and actions of all agents for training, while during the execution phase each agent makes decisions based only on its own observations. However, in this framework the agents do not fully consider the information of other agents or the complex interactions between them during execution, which affects the correctness of their decisions. Therefore, this paper proposes a heterogeneous multi-agent reinforcement learning model based on graph neural networks, which we call QMIX-GNN. This model efficiently and flexibly handles input data of different dimensions, enabling the fusion of heterogeneous multi-agent information and providing this fused information to the agents. In turn, this allows them to perceive more comprehensive information and improve the correctness of their decisions. Experimental results demonstrate that the QMIX-GNN model performs better than other methods on complex multi-agent collaborative tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实尔容完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
完美世界应助专注鼠标采纳,获得30
5秒前
inferyes完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
Crazy_Runner完成签到,获得积分10
9秒前
zzz完成签到,获得积分10
9秒前
mcf6662发布了新的文献求助20
10秒前
猪猪hero发布了新的文献求助10
10秒前
11秒前
11秒前
WWK13发布了新的文献求助10
11秒前
Hello应助hnxxangel采纳,获得20
12秒前
12秒前
暮春之初发布了新的文献求助30
13秒前
无私大神完成签到,获得积分10
14秒前
15秒前
飘逸雅容发布了新的文献求助10
16秒前
猪猪hero发布了新的文献求助30
17秒前
嘻嘻嘻完成签到 ,获得积分20
17秒前
万能图书馆应助Chelsea采纳,获得10
17秒前
辛勤的夏云完成签到,获得积分10
18秒前
YY发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助100
18秒前
Aru完成签到 ,获得积分10
20秒前
20秒前
科研通AI5应助Pooh采纳,获得10
21秒前
cola发布了新的文献求助80
21秒前
23秒前
xzy998应助默默的微笑采纳,获得10
24秒前
bkagyin应助酷炫梦蕊采纳,获得10
24秒前
田様应助YY采纳,获得10
25秒前
WWK13完成签到,获得积分20
25秒前
弦断陌殇完成签到,获得积分10
26秒前
29秒前
生生发布了新的文献求助10
30秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291599
求助须知:如何正确求助?哪些是违规求助? 3818565
关于积分的说明 11957796
捐赠科研通 3461990
什么是DOI,文献DOI怎么找? 1898907
邀请新用户注册赠送积分活动 947370
科研通“疑难数据库(出版商)”最低求助积分说明 850106