Cortical thickness and structural covariance network alterations in cerebral amyloid angiopathy: A graph theoretical analysis

脑淀粉样血管病 神经科学 协方差 图形 心理学 数学 医学 病理 疾病 痴呆 组合数学 统计
作者
Yijun Lin,Bin Gao,Yang Du,Mengyao Li,Yanfang Liu,Xingquan Zhao
出处
期刊:Neurobiology of Disease [Elsevier BV]
卷期号:210: 106911-106911
标识
DOI:10.1016/j.nbd.2025.106911
摘要

This study investigates large-scale brain network alterations in cerebral amyloid angiopathy (CAA) using structural covariance network (SCN) analysis and graph theory based on 7 T MRI. We employed structural covariance network (SCN) analysis based on cortical thickness data from ultra-high field 7 T MRI to investigate network alterations in CAA patients. Graph theoretical analysis was applied to quantify topological properties, including small-worldness, nodal centrality, and network efficiency. Between-group differences were assessed using permutation tests and false discovery rate (FDR) correction. CAA patients exhibited significant alterations in small-world properties, with decreased Gamma (p = 0.002) and Sigma (p < 0.001), suggesting a shift toward a less optimal network configuration. Local efficiency was significantly different between groups (p = 0.045), while global efficiency remained unchanged (p = 0.127), indicating regionally disrupted rather than globally impaired network efficiency. At the nodal level, the right superior frontal gyrus exhibited increased betweenness centrality (p = 0.013), whereas the right banks of the superior temporal sulcus, left postcentral gyrus, and left superior temporal gyrus showed significantly reduced centrality (all p < 0.05). Additionally, nodal degree and efficiency were altered in key memory-related and association regions, including the entorhinal cortex, fusiform gyrus, and temporal pole. SCN analysis combined with graph theory offers a valuable approach for understanding disease-related connectivity disruptions and may contribute to the development of network-based biomarkers for CAA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
6秒前
好运滚滚来完成签到 ,获得积分10
10秒前
chali48发布了新的文献求助10
11秒前
Nefelibate完成签到,获得积分10
11秒前
11秒前
上善若水完成签到 ,获得积分10
12秒前
13秒前
今后应助Guoqiang采纳,获得30
14秒前
14秒前
勤劳涵山发布了新的文献求助10
14秒前
15秒前
11发布了新的文献求助10
17秒前
轩辕白竹完成签到,获得积分10
18秒前
20秒前
yc发布了新的文献求助10
21秒前
勤劳涵山完成签到,获得积分10
25秒前
Guoqiang发布了新的文献求助30
25秒前
彭于晏应助邓炎林采纳,获得10
27秒前
gao_yiyi应助绵绵采纳,获得50
28秒前
Qiancheni完成签到,获得积分10
29秒前
Venovenom发布了新的文献求助10
35秒前
科研通AI5应助陈豆豆采纳,获得10
35秒前
完美世界应助smallsix采纳,获得10
39秒前
QIN完成签到,获得积分10
40秒前
yc完成签到,获得积分20
42秒前
42秒前
S.S.N完成签到 ,获得积分10
42秒前
陈豆豆完成签到,获得积分10
42秒前
邓炎林发布了新的文献求助10
46秒前
47秒前
47秒前
善学以致用应助挑挑采纳,获得10
49秒前
星辰大海应助JIA采纳,获得10
49秒前
50秒前
smallsix发布了新的文献求助10
51秒前
情怀应助xixihaha采纳,获得10
52秒前
52秒前
陈豆豆发布了新的文献求助10
53秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782130
求助须知:如何正确求助?哪些是违规求助? 3327565
关于积分的说明 10232237
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670024
邀请新用户注册赠送积分活动 799592
科研通“疑难数据库(出版商)”最低求助积分说明 758825