Optimisation and interpretation of machine and deep learning models for improved water quality management in Lake Loktak

水质 口译(哲学) 质量(理念) 人工智能 计算机科学 环境科学 机器学习 生态学 认识论 哲学 生物 程序设计语言
作者
Mohd Waseem Naikoo,. Shahfahad,Somnath Bera,Mohd Waseem Naikoo,G. V. Ramana,Santanu Mallik,Parveen Kumar,Atiqur Rahman
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:351: 119866-119866
标识
DOI:10.1016/j.jenvman.2023.119866
摘要

Loktak Lake, one of the largest freshwater lakes in Manipur, India, is critical for the eco-hydrology and economy of the region, but faces deteriorating water quality due to urbanisation, anthropogenic activities, and domestic sewage. Addressing the urgent need for effective pollution management, this study aims to assess the lake's water quality status using the water quality index (WQI) and develop advanced machine learning (ML) tools for WQI assessment and ML model interpretation to improve pollution management decision making. The WQI was assessed using entropy-based weighting arithmetic and three ML models - Gradient Boosting Machine (GBM), Random Forest (RF) and Deep Neural Network (DNN) - were optimised using a grid search algorithm in the H2O Application Programming Interface (API). These models were validated by various metrics and interpreted globally and locally via Partial Dependency Plot (PDP), Accumulated Local Effect (ALE) and SHapley Additive exPlanations (SHAP). The results show a WQI range of 72.38-100, with 52.7% of samples categorised as very poor. The RF model outperformed GBM and DNN and showed the highest accuracy and generalisation ability, which is reflected in the superior R2 values (0.97 in training, 0.9 in test) and the lower root mean square error (RMSE). RF's minimal margin of error and reliable feature interpretation contrasted with DNN's larger margin of error and inconsistency, which affected its usefulness for decision making. Turbidity was found to be a critical predictive feature in all models, significantly influencing WQI, with other variables such as pH and temperature also playing an important role. SHAP dependency plots illustrated the direct relationship between key water quality parameters such as turbidity and WQI predictions. The novelty of this study lies in its comprehensive approach to the evaluation and interpretation of ML models for WQI estimation, which provides a nuanced understanding of water quality dynamics in Loktak Lake. By identifying the most effective ML models and key predictive functions, this study provides invaluable insights for water quality management and paves the way for targeted strategies to monitor and improve water quality in this vital freshwater ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的一手完成签到 ,获得积分10
2秒前
tengfei完成签到 ,获得积分10
4秒前
哭泣恋风完成签到 ,获得积分10
11秒前
Telomere完成签到 ,获得积分10
15秒前
行云流水完成签到,获得积分10
17秒前
愿景完成签到 ,获得积分10
22秒前
缓慢的冬云完成签到 ,获得积分10
27秒前
miyulong发布了新的文献求助10
40秒前
悲痛宇宙完成签到,获得积分10
49秒前
青岛彭于晏完成签到 ,获得积分10
50秒前
哈哈哈完成签到 ,获得积分10
50秒前
蓝眸完成签到 ,获得积分10
1分钟前
温柔觅松完成签到 ,获得积分10
1分钟前
水晶李完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
bluelemon发布了新的文献求助10
1分钟前
Ha完成签到 ,获得积分10
1分钟前
fanssw完成签到 ,获得积分10
1分钟前
Luke Gee完成签到 ,获得积分10
1分钟前
Tonnyjing应助彭友俊采纳,获得10
1分钟前
仲夏的梦完成签到 ,获得积分10
1分钟前
科研通AI2S应助全鑫采纳,获得10
1分钟前
上善若水呦完成签到 ,获得积分10
1分钟前
请叫我鬼才完成签到,获得积分10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
gxq19848888完成签到,获得积分20
2分钟前
金生六完成签到 ,获得积分10
2分钟前
王红玉完成签到,获得积分10
2分钟前
Axs完成签到,获得积分10
2分钟前
陈秋发布了新的文献求助10
2分钟前
Ray完成签到 ,获得积分10
2分钟前
kento应助研友_xnEOX8采纳,获得50
2分钟前
小玲子完成签到 ,获得积分10
2分钟前
janer完成签到 ,获得积分10
2分钟前
glanceofwind完成签到 ,获得积分10
2分钟前
Lrh完成签到 ,获得积分10
2分钟前
光亮若翠完成签到,获得积分10
2分钟前
你好发布了新的文献求助10
2分钟前
嗯好22222完成签到 ,获得积分10
2分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052652
求助须知:如何正确求助?哪些是违规求助? 2709874
关于积分的说明 7418267
捐赠科研通 2354446
什么是DOI,文献DOI怎么找? 1246020
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921