Network pharmacology integrated molecular docking of fucoidan against oral cancer and in vitro evaluation- A study using GEO datasets

褐藻糖胶 小桶 毒理基因组学 计算生物学 药物发现 药理学 药物重新定位 生物信息学 药品 生物 基因 生物化学 转录组 基因表达 遗传学 多糖
作者
Arul Jayanthi Antonisamy,Karthikeyan Rajendran,Premnath Dhanaraj
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-24 被引量:1
标识
DOI:10.1080/07391102.2024.2316771
摘要

Oral cancer is a widespread health concern in rural India due to a lack of awareness, delayed diagnosis and limited access to affordable treatment options. The current chemotherapy has notable side effects, underscoring the need for new drug candidates with improved bioavailability and specificity. In this current research, fucoidan, a sulphated polysaccharide, was extracted from the brown algae Spatoglossum asperum, and shown to be cytotoxic in vitro against oral cancer cells (KB cell line) at an IC50 of 107.76 µg/ml, suggesting its potential as a drug candidate. This study further aimed to explore the potential therapeutic implications of fucoidan in managing oral cancer using network pharmacology. PharmMapper, Comparative Toxicogenomics Database and SuperPred were initially used to identify fucoidan protein targets. The identified targets were further screened against Gene Expression Omnibus (GSE23558, GSE25099 and GSE146483), OMIM, TCGA and GeneCards datasets to identify oral cancer-specific protein targets. The interactions between the selected proteins were visualised using STRING and Cytoscape. Subsequently, Database for Annotation, Visualization and Integrated Discovery was used for gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of candidate targets. The cancer-related network was assessed using CancerGeneNet, while life expectancy based on the expression of the top 10 CytoHubba ranked hub genes was evaluated using Kaplan-Meier plots. Finally, EGFR, AKT1, HSP90AA1 and SRC were selected for docking and molecular dynamics simulation with fucoidan, using Maestro and GROMACS, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助大成子采纳,获得10
1秒前
你hao发布了新的文献求助10
2秒前
xiaohuang发布了新的文献求助10
2秒前
4秒前
星辰大海应助森林有木采纳,获得10
5秒前
蛋挞完成签到 ,获得积分10
8秒前
天天快乐应助zhh采纳,获得20
8秒前
11秒前
xiaohuang完成签到,获得积分10
12秒前
weny完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
16秒前
阔达紫青应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
大成子发布了新的文献求助10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
17秒前
ding应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
xs小仙女应助科研通管家采纳,获得10
17秒前
三里墩头应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
所所应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
怀安完成签到,获得积分20
19秒前
19秒前
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366