Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles

强化学习 计算机科学 钢筋 业务 运输工程 工程类 人工智能 结构工程
作者
Ali Louati,Hassen Louati,Elham Kariri,Wafa Neifar,Mohamed Khalafalla Hassan,Mutaz H. H. Khairi,Mohammed A. Farahat,Heba M. El‐Hoseny
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (5): 1779-1779 被引量:7
标识
DOI:10.3390/su16051779
摘要

As urban centers evolve into smart cities, sustainable mobility emerges as a cornerstone for ensuring environmental integrity and enhancing quality of life. Autonomous vehicles (AVs) play a pivotal role in this transformation, with the potential to significantly improve efficiency and safety, and reduce environmental impacts. This study introduces a novel Multi-Agent Actor–Critic (MA2C) algorithm tailored for multi-AV lane-changing in mixed-traffic scenarios, a critical component of intelligent transportation systems in smart cities. By incorporating a local reward system that values efficiency, safety, and passenger comfort, and a parameter-sharing scheme that encourages inter-agent collaboration, our MA2C algorithm presents a comprehensive approach to urban traffic management. The MA2C algorithm leverages reinforcement learning to optimize lane-changing decisions, ensuring optimal traffic flow and enhancing both environmental sustainability and urban living standards. The actor–critic architecture is refined to minimize variances in urban traffic conditions, enhancing predictability and safety. The study extends to simulating realistic human-driven vehicle (HDV) behavior using the Intelligent Driver Model (IDM) and the model of Minimizing Overall Braking Induced by Lane changes (MOBIL), contributing to more accurate and effective traffic management strategies. Empirical results indicate that the MA2C algorithm outperforms existing state-of-the-art models in managing lane changes, passenger comfort, and inter-vehicle cooperation, essential for the dynamic environment of smart cities. The success of the MA2C algorithm in facilitating seamless interaction between AVs and HDVs holds promise for more fluid urban traffic conditions, reduced congestion, and lower emissions. This research contributes to the growing body of knowledge on autonomous driving within the framework of sustainable smart cities, focusing on the integration of AVs into the urban fabric. It underscores the potential of machine learning and artificial intelligence in developing transportation systems that are not only efficient and safe but also sustainable, supporting the broader goals of creating resilient, adaptive, and environmentally friendly urban spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的傲蕾完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
玉沐沐完成签到 ,获得积分10
3秒前
3秒前
星辰大海应助qiqi1111采纳,获得10
4秒前
5秒前
椒盐给椒盐的求助进行了留言
5秒前
hute完成签到 ,获得积分10
6秒前
6秒前
8秒前
hunter发布了新的文献求助10
8秒前
Lucas应助英吉利25采纳,获得10
10秒前
dyy发布了新的文献求助10
12秒前
mika完成签到,获得积分10
12秒前
shelly发布了新的文献求助10
14秒前
14秒前
14秒前
芽芽豆完成签到 ,获得积分10
15秒前
彭于晏应助叮当采纳,获得10
15秒前
abab完成签到 ,获得积分10
15秒前
ilaragakki完成签到,获得积分20
17秒前
17秒前
烤鱼片完成签到 ,获得积分10
17秒前
19秒前
19秒前
思源应助dyy采纳,获得10
20秒前
qiqi1111发布了新的文献求助10
20秒前
大皿同学完成签到,获得积分20
20秒前
爱洗澡的猕猴桃完成签到,获得积分20
20秒前
hjy发布了新的文献求助10
21秒前
Iridescent发布了新的文献求助10
24秒前
26秒前
26秒前
周子文完成签到,获得积分10
27秒前
喵喵喵发布了新的文献求助10
29秒前
32秒前
loyal发布了新的文献求助30
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312188
求助须知:如何正确求助?哪些是违规求助? 4455976
关于积分的说明 13864983
捐赠科研通 4344392
什么是DOI,文献DOI怎么找? 2385837
邀请新用户注册赠送积分活动 1380209
关于科研通互助平台的介绍 1348565