Precision in disease dynamics: Finite difference solutions for stochastic epidemics with treatment cure and partial immunity

数学 随机微分方程 欧拉法 随机偏微分方程 应用数学 方案(数学) 微分方程 数学优化 欧拉公式 数学分析
作者
Muhammad Shoaib Arif,Kamaleldin Abodayeh,Yasir Nawaz
出处
期刊:Partial differential equations in applied mathematics [Elsevier BV]
卷期号:9: 100660-100660 被引量:2
标识
DOI:10.1016/j.padiff.2024.100660
摘要

The complex and ever-changing characteristics of epidemic modelling, particularly when considering random elements, provide a substantial obstacle in creating precise and practical numerical methods for solving differential equations. This study contributes to this effort by introducing an innovative finite difference method for linear and non-linear stochastic and deterministic differential equations. This scheme expands explicitly upon the Euler Maruyama method, improving its precision for the deterministic aspect while ensuring coherence in dealing with stochastic terms. This contribution provides a numerical scheme that can be used to find solutions to linear and non-linear stochastic and deterministic differential equations. The scheme can be considered as the extension of the Euler Maruyama scheme for solving stochastic differential equations. The Euler Maruyama scheme offers a first-order accuracy of the deterministic model. Still, this scheme provides second-order accuracy for the deterministic part, whereas the integration of stochastic terms is the same in both schemes. The scheme is employed in a stochastic diffusive epidemic model with the effect of treatment, cure, and partial immunity. The comparison of the proposed scheme with the existing nonstandard finite difference method is made, and it is shown that the proposed scheme performs better than the nonstandard finite difference method in accuracy for the deterministic differential equations. It is also demonstrated that susceptible people rise whereas infected and recovered people decline by enhancing treatment cure rate. How does the cure rate of the treatment influence the number of the three populations, i.e., S(t), I(t), and R(t)? The results from the numerical simulation have provided useful insights into the dynamics of the epidemic model under various settings. This is particularly useful for influencing any public health plan and intervention. Thus, this work contributes numerical approaches and is an essential tool for epidemiological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Ning_采纳,获得10
1秒前
1秒前
2秒前
王智慧发布了新的文献求助10
2秒前
chenjunan发布了新的文献求助10
3秒前
godblessyou发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助lxh采纳,获得10
6秒前
HJJHJH发布了新的文献求助30
6秒前
7秒前
有足量NaCl发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
ding应助HJJHJH采纳,获得10
11秒前
Rencal完成签到 ,获得积分10
12秒前
godblessyou完成签到,获得积分10
13秒前
14秒前
剑K完成签到,获得积分10
14秒前
17秒前
赵雷发布了新的文献求助10
19秒前
19秒前
孙燕应助chenjunan采纳,获得10
20秒前
浮生如梦完成签到,获得积分10
20秒前
22秒前
小蘑菇应助5165asd采纳,获得10
24秒前
ycj发布了新的文献求助10
25秒前
粉面菜蛋完成签到,获得积分10
26秒前
27秒前
27秒前
哈哈哈哈啊哈完成签到,获得积分10
28秒前
Ttimer完成签到,获得积分10
30秒前
RATHER完成签到,获得积分10
31秒前
31秒前
蛋挞完成签到,获得积分20
31秒前
31秒前
32秒前
量子星尘发布了新的文献求助10
32秒前
香蕉觅云应助蓝雷狮王采纳,获得20
33秒前
OIIII应助DL采纳,获得10
34秒前
斯文败类应助无奈的尔白采纳,获得10
35秒前
Jasper应助沙雕续命采纳,获得10
35秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870874
求助须知:如何正确求助?哪些是违规求助? 3412925
关于积分的说明 10682149
捐赠科研通 3137423
什么是DOI,文献DOI怎么找? 1730915
邀请新用户注册赠送积分活动 834476
科研通“疑难数据库(出版商)”最低求助积分说明 781172