材料科学
选择性
气体分离
二进制数
分析化学(期刊)
有机化学
化学
数学
膜
生物化学
算术
催化作用
作者
Se‐Min Jeong,Dong-Hyun Kim,Ju Yeon Park,Ji Woong Yoon,Su‐Kyung Lee,Jong Suk Lee,Donghui Jo,Kyung Ho Cho,U‐Hwang Lee
标识
DOI:10.1021/acsami.3c16849
摘要
In this study, three nitrogen-containing aluminum-based metal–organic frameworks (Al-MOFs), namely, CAU-10pydc, MOF-303, and KMF-1, were investigated for the efficient separation of a C2H2/CO2 gas mixture. Among these three Al-MOFs, KMF-1 demonstrated the highest selectivity for C2H2/CO2 separation (6.31), primarily owing to its superior C2H2 uptake (7.90 mmol g–1) and lower CO2 uptake (2.82 mmol g–1) compared to that of the other two Al-MOFs. Dynamic breakthrough experiments, using an equimolar binary C2H2/CO2 gas mixture, demonstrated that KMF-1 achieved the highest separation performance. It yielded 3.42 mmol g–1 of high-purity C2H2 (>99.95%) through a straightforward desorption process under He purging at 298 K and 1 bar. To gain insights into the distinctive characteristics of the pore surfaces of structurally similar CAU-10pydc and KMF-1, we conducted computational simulations using canonical Monte Carlo and dispersion-corrected density functional theory methods. These simulations revealed that the secondary amine (C2N–H) groups in KMF-1 played a more significant role in differentiating between C2H2 and CO2 compared to that of the N atoms in CAU-10pydc and MOF-303. Consequently, KMF-1 emerged as a promising adsorbent for the separation of high-purity C2H2 from binary C2H2/CO2 gas mixtures.
科研通智能强力驱动
Strongly Powered by AbleSci AI