亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Disease-Free Survival in Breast Cancer using Deep Learning with Ultrasound and Mammography: A Multicenter Study

医学 乳腺摄影术 乳腺癌 超声波 比例危险模型 疾病 肿瘤科 病态的 癌症 放射科 内科学
作者
Junqi Han,Hui Hua,Fei Jie,Jingjing Liu,Yijun Guo,Wenjuan Ma,Jingjing Chen
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:24 (3): 215-226 被引量:13
标识
DOI:10.1016/j.clbc.2024.01.005
摘要

Breast cancer is a leading cause of cancer morbility and mortality in women. The possibility of overtreatment or inappropriate treatment exists, and methods for evaluating prognosis need to be improved.Patients (from January 2013 to December 2018) were recruited and divided into a training group and a testing group. All patients were followed for more than 3 years. Patients were divided into a disease-free group and a recurrence group based on follow up results at 3 years. Ultrasound (US) and mammography (MG) images were collected to establish deep learning models (DLMs) using ResNet50. Clinical data, MG, and US characteristics were collected to select independent prognostic factors using a cox proportional hazards model to establish a clinical model. DLM and independent prognostic factors were combined to establish a combined model.In total, 1242 patients were included. Independent prognostic factors included age, neoadjuvant chemotherapy, HER2, orientation, blood flow, dubious calcification, and size. We established 5 models: the US DLM, MG DLM, US + MG DLM, clinical and combined model. The combined model using US images, MG images, and pathological, clinical, and radiographic characteristics had the highest predictive performance (AUC = 0.882 in the training group, AUC = 0.739 in the testing group).DLMs based on the combination of US, MG, and clinical data have potential as predictive tools for breast cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助心灵美的大山采纳,获得10
14秒前
彭于晏应助丽优采纳,获得10
34秒前
36秒前
wpwp发布了新的文献求助10
41秒前
浮游应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
丘比特应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
43秒前
52秒前
zack发布了新的文献求助10
56秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
炸鸡叔完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zmjmj发布了新的文献求助10
1分钟前
xiongyh10完成签到,获得积分0
1分钟前
fx完成签到 ,获得积分10
2分钟前
汉堡包应助丽优采纳,获得10
2分钟前
zmjmj完成签到,获得积分20
2分钟前
2分钟前
zack发布了新的文献求助10
2分钟前
酷波er应助zack采纳,获得30
2分钟前
liuliu发布了新的文献求助10
2分钟前
wanci应助zack采纳,获得10
2分钟前
2分钟前
李爱国应助丽优采纳,获得10
2分钟前
liuliu完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
炸鸡叔发布了新的文献求助100
2分钟前
3分钟前
Lucas应助郝誉采纳,获得10
3分钟前
CodeCraft应助郝誉采纳,获得10
3分钟前
小蘑菇应助郝誉采纳,获得10
3分钟前
浮游应助郝誉采纳,获得30
3分钟前
orixero应助郝誉采纳,获得10
3分钟前
浮游应助郝誉采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426463
求助须知:如何正确求助?哪些是违规求助? 4540214
关于积分的说明 14171846
捐赠科研通 4457975
什么是DOI,文献DOI怎么找? 2444749
邀请新用户注册赠送积分活动 1435805
关于科研通互助平台的介绍 1413245