Machine Learning Test for Modulation Range of Ammonium Metatungstate Based Liquid Electrochromic Devices

电致变色 电致变色装置 调制(音乐) 航程(航空) 材料科学 化学 分析化学(期刊) 纳米技术 计算机科学 色谱法 电极 物理 物理化学 有机化学 复合材料 声学
作者
Haoyang Yan,Muyun Li,Honglong Ning,Chenxiao Guo,Xinglin Li,Zihan Zhang,Bingyan Jiang,Wenjing Xu,Rihui Yao,Junbiao Peng
出处
期刊:Lecture notes in electrical engineering 卷期号:: 505-513
标识
DOI:10.1007/978-981-99-9955-2_68
摘要

In recent years, machine learning (ML) has been widely applied in material science for material synthesis and molecular structural prediction. However, the application of machine learning in the field of electrochromic devices (ECDs) is relatively limited and only involves traditional solid-state ECDs. In comparison to solid-state devices, liquid devices have simpler structures and better performance, making them a promising research direction for the future. In this study, we explore the effects of ferrous chloride and ferrous sulfate as additives on ammonium metatungstate liquid ECDs. Electrochromic solutions with different concentrations were synthesized using the hydrothermal method, to fabricate three-layer electrode / electrochromic liquid / electrode devices. The alternation of transmittance at different current were measured to calculate the modulation range. Using the measuring results as training data, seven different regression algorithms were used to construct the modulation range models of these two kinds of ECDs, and their generalization ability was compared. In addition, we used different models to predict the solution formulations of ECDs with optimal modulation range, then fabricated new ECDs based on these formulations to verify the predictions. It turns out that modulation range models using decision tree regression and kernel ridge regression have the best prediction performance. In addition, considering the model generalization ability and prediction accuracy for the optimal formulation, decision tree regression is the best ML algorithm for both ammonium metatungstate-ferrous chloride and ammonium metatungstate-ferrous sulfate based ECDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
妮妮发布了新的文献求助10
1秒前
1秒前
3秒前
4秒前
huco发布了新的文献求助10
4秒前
5秒前
科研通AI5应助无情的笑萍采纳,获得10
5秒前
八九不离十完成签到,获得积分10
6秒前
爆米花应助laopei2001采纳,获得10
7秒前
小蘑菇应助fanstic330采纳,获得10
7秒前
VL_3发布了新的文献求助30
7秒前
虚幻人完成签到,获得积分10
7秒前
张玺关注了科研通微信公众号
7秒前
8秒前
8秒前
bkagyin应助千思采纳,获得10
8秒前
迷路中的骑手完成签到,获得积分10
8秒前
9秒前
11秒前
12秒前
英姑应助勤恳凡之采纳,获得10
12秒前
12秒前
13秒前
13秒前
ZCY发布了新的文献求助10
16秒前
wyx发布了新的文献求助10
17秒前
17秒前
laopei2001发布了新的文献求助10
18秒前
19秒前
zxt完成签到 ,获得积分10
19秒前
chipo完成签到,获得积分10
20秒前
21秒前
彭于彦祖应助ly采纳,获得20
21秒前
22秒前
万能图书馆应助wyx采纳,获得10
22秒前
小呆鹿发布了新的文献求助30
22秒前
laopei2001完成签到,获得积分10
24秒前
张玺发布了新的文献求助50
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303