Deformation-aware and reconstruction-driven multimodal representation learning for brain tumor segmentation with missing modalities

计算机科学 代表(政治) 模式 分割 人工智能 变形(气象学) 计算机视觉 模式识别(心理学) 地质学 社会学 政治学 社会科学 政治 海洋学 法学
作者
Zhiyuan Li,Yafei Zhang,Huafeng Li,Yi Chai,Yushi Yang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 106012-106012 被引量:10
标识
DOI:10.1016/j.bspc.2024.106012
摘要

Multimodal magnetic resonance imaging (MRI) provides complementary information for brain tumor segmentation, and several methods leveraging full modalities have been proposed. However, capturing the full modality information is challenging due to commonplace data corruption, imperfect imaging protocols, and patient-related constraints. The unavailability of certain modalities can significantly undermine the performance of segmentation methods that rely on full-modality data. To address this issue, this paper proposes a deformation-aware and reconstruction-driven method for brain tumor segmentation in the presence of missing modalities. The proposed method introduces a local–global modeling module to enhance the intramodal feature representation ability of the modality-specific encoder. Considering the irregular shape of tumor regions, we develop a deformation-adaptive perceptual multimodal representation learning module that learns deformation information from an incomplete set of multimodal images, thereby guiding the network to accurately localize the tumor regions. Furthermore, we design a reconstruction-driven key-information mining module that recovers the original images from the features extracted by the encoder. This process further ensures that the encoder can extract the key tumor discriminative features. During the inference phase, the module is removed to mitigate additional computational burdens. Experimental results on two publicly available multimodal brain tumor benchmark datasets show that the proposed method outperforms existing brain tumor segmentation methods with missing modalities. The code is available at https://github.com/Linzy0227/SRMNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的寄灵完成签到,获得积分20
2秒前
张培元发布了新的文献求助10
4秒前
4秒前
吉他独奏手完成签到,获得积分10
4秒前
天天快乐应助不安的依风采纳,获得10
4秒前
张培元完成签到,获得积分10
8秒前
9秒前
qinandi124完成签到,获得积分10
9秒前
10秒前
zisui完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
过冬完成签到,获得积分10
17秒前
18秒前
18秒前
愉快半烟发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
21秒前
23秒前
fb12000发布了新的文献求助10
23秒前
王鹤霏完成签到,获得积分10
23秒前
xzj发布了新的文献求助10
23秒前
fb12000发布了新的文献求助10
23秒前
吐金纳发布了新的文献求助20
24秒前
Noah完成签到 ,获得积分0
24秒前
25秒前
25秒前
木偶人完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
fb12000发布了新的文献求助10
26秒前
fb12000发布了新的文献求助10
27秒前
ding应助小徐徐爱学习采纳,获得10
27秒前
28秒前
英俊水池发布了新的文献求助10
29秒前
充电宝应助HU采纳,获得10
29秒前
可爱的函函应助musejie采纳,获得10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679544
求助须知:如何正确求助?哪些是违规求助? 4991293
关于积分的说明 15169832
捐赠科研通 4839336
什么是DOI,文献DOI怎么找? 2593253
邀请新用户注册赠送积分活动 1546377
关于科研通互助平台的介绍 1504488