Personalized differential expression analysis in triple-negative breast cancer

生物 基因 乳腺癌 计算生物学 癌症 人口 表型 遗传学 癌症研究 医学 环境卫生
作者
Hao Cai,Liangbo Chen,Shuxin Yang,Rui-Sheng Jiang,You Guo,Ming He,Yun Luo,Guini Hong,Hong‐Dong Li,Kai Song
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
标识
DOI:10.1093/bfgp/elad057
摘要

Abstract Identification of individual-level differentially expressed genes (DEGs) is a pre-step for the analysis of disease-specific biological mechanisms and precision medicine. Previous algorithms cannot balance accuracy and sufficient statistical power. Herein, RankCompV2, designed for identifying population-level DEGs based on relative expression orderings, was adjusted to identify individual-level DEGs. Furthermore, an optimized version of individual-level RankCompV2, named as RankCompV2.1, was designed based on the assumption that the rank positions of genes and relative rank differences of gene pairs would influence the identification of individual-level DEGs. In comparison to other individualized analysis algorithms, RankCompV2.1 performed better on statistical power, computational efficiency, and acquired coequal accuracy in both simulation and real paired cancer-normal data from ten cancer types. Besides, single sample GSEA and Gene Set Variation Analysis analysis showed that pathways enriched with up-regulated and down-regulated genes presented higher and lower enrichment scores, respectively. Furthermore, we identified 16 genes that were universally deregulated in 966 triple-negative breast cancer (TNBC) samples and interacted with Food and Drug Administration (FDA)-approved drugs or antineoplastic agents, indicating notable therapeutic targets for TNBC. In addition, we also identified genes with highly variable deregulation status and used these genes to cluster TNBC samples into three subgroups with different prognoses. The subgroup with the poorest outcome was characterized by down-regulated immune-regulated pathways, signal transduction pathways, and apoptosis-related pathways. Protein–protein interaction network analysis revealed that OAS family genes may be promising drug targets to activate tumor immunity in this subgroup. In conclusion, RankCompV2.1 is capable of identifying individual-level DEGs with high accuracy and statistical power, analyzing mechanisms of carcinogenesis and exploring therapeutic strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅倪完成签到,获得积分10
1秒前
1秒前
无聊的夜山完成签到,获得积分10
1秒前
算命先生完成签到,获得积分10
1秒前
科研小辣机完成签到 ,获得积分10
2秒前
2秒前
落后一一发布了新的文献求助10
2秒前
3秒前
王二麻发布了新的文献求助10
3秒前
3秒前
3秒前
GBRUCE发布了新的文献求助30
3秒前
L丶完成签到,获得积分10
3秒前
wanci应助XUN采纳,获得10
3秒前
笑笑发布了新的文献求助10
3秒前
4秒前
阿橘完成签到,获得积分10
4秒前
胖小羊发布了新的文献求助10
5秒前
huanhuan发布了新的文献求助10
5秒前
哇咔咔完成签到,获得积分10
5秒前
乐乐应助山复尔尔采纳,获得10
6秒前
joasuka发布了新的文献求助10
6秒前
小马甲应助大鲁采纳,获得10
7秒前
科研完成签到,获得积分10
7秒前
cc完成签到,获得积分10
7秒前
若俗人发布了新的文献求助10
8秒前
加特林完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
林林林林发布了新的文献求助10
9秒前
崔昕雨完成签到,获得积分20
10秒前
許能发布了新的文献求助20
10秒前
10秒前
577完成签到,获得积分10
11秒前
Hollen完成签到 ,获得积分10
11秒前
科研通AI5应助江月年采纳,获得10
11秒前
12秒前
13秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805997
求助须知:如何正确求助?哪些是违规求助? 3350835
关于积分的说明 10351617
捐赠科研通 3066714
什么是DOI,文献DOI怎么找? 1684126
邀请新用户注册赠送积分活动 809309
科研通“疑难数据库(出版商)”最低求助积分说明 765432