Personalized differential expression analysis in triple-negative breast cancer

生物 基因 乳腺癌 计算生物学 癌症 人口 表型 遗传学 癌症研究 医学 环境卫生
作者
Hao Cai,Liangbo Chen,Shuxin Yang,Rui-Sheng Jiang,You Guo,Ming He,Yun Luo,Guini Hong,Hong‐Dong Li,Kai Song
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
标识
DOI:10.1093/bfgp/elad057
摘要

Abstract Identification of individual-level differentially expressed genes (DEGs) is a pre-step for the analysis of disease-specific biological mechanisms and precision medicine. Previous algorithms cannot balance accuracy and sufficient statistical power. Herein, RankCompV2, designed for identifying population-level DEGs based on relative expression orderings, was adjusted to identify individual-level DEGs. Furthermore, an optimized version of individual-level RankCompV2, named as RankCompV2.1, was designed based on the assumption that the rank positions of genes and relative rank differences of gene pairs would influence the identification of individual-level DEGs. In comparison to other individualized analysis algorithms, RankCompV2.1 performed better on statistical power, computational efficiency, and acquired coequal accuracy in both simulation and real paired cancer-normal data from ten cancer types. Besides, single sample GSEA and Gene Set Variation Analysis analysis showed that pathways enriched with up-regulated and down-regulated genes presented higher and lower enrichment scores, respectively. Furthermore, we identified 16 genes that were universally deregulated in 966 triple-negative breast cancer (TNBC) samples and interacted with Food and Drug Administration (FDA)-approved drugs or antineoplastic agents, indicating notable therapeutic targets for TNBC. In addition, we also identified genes with highly variable deregulation status and used these genes to cluster TNBC samples into three subgroups with different prognoses. The subgroup with the poorest outcome was characterized by down-regulated immune-regulated pathways, signal transduction pathways, and apoptosis-related pathways. Protein–protein interaction network analysis revealed that OAS family genes may be promising drug targets to activate tumor immunity in this subgroup. In conclusion, RankCompV2.1 is capable of identifying individual-level DEGs with high accuracy and statistical power, analyzing mechanisms of carcinogenesis and exploring therapeutic strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
铁锤完成签到,获得积分10
1秒前
linkman应助确幸采纳,获得30
2秒前
文艺的伊关注了科研通微信公众号
2秒前
野草发布了新的文献求助10
2秒前
爆米花应助早早早早采纳,获得20
3秒前
7秒前
dddd应助啦啦啦啦采纳,获得30
11秒前
刘睿然发布了新的文献求助10
15秒前
学术喜剧人完成签到,获得积分10
16秒前
科研通AI5应助wangye采纳,获得10
16秒前
科研通AI5应助韩东宸采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得50
18秒前
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
18秒前
20秒前
21秒前
zeng发布了新的文献求助10
23秒前
待花盛完成签到,获得积分10
24秒前
大个应助一个兜兜采纳,获得10
25秒前
文艺的伊发布了新的文献求助10
25秒前
pl完成签到 ,获得积分10
25秒前
YYYY发布了新的文献求助10
26秒前
27秒前
馍夹菜应助芋圆葡萄采纳,获得20
27秒前
Joying发布了新的文献求助10
30秒前
搜集达人应助Morgenstern_ZH采纳,获得10
30秒前
111发布了新的文献求助10
31秒前
深情安青应助kyou采纳,获得10
33秒前
34秒前
35秒前
36秒前
合适的芸遥完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404233
求助须知:如何正确求助?哪些是违规求助? 3890509
关于积分的说明 12107666
捐赠科研通 3535237
什么是DOI,文献DOI怎么找? 1939823
邀请新用户注册赠送积分活动 980732
科研通“疑难数据库(出版商)”最低求助积分说明 877456