亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Robust Machine Learning Approach for Path Loss Prediction in 5G Networks with Nested Cross Validation

计算机科学 过度拟合 路径损耗 均方误差 机器学习 梯度升压 人工智能 随机森林 人工神经网络 平均绝对百分比误差 极限学习机 无线网络 RSS 支持向量机 数据挖掘 无线 统计 电信 数学 操作系统
作者
İbrahim Yazıcı,Emre Güreş
标识
DOI:10.1109/wincom59760.2023.10322963
摘要

The design and deployment of fifth-generation (5G) wireless networks pose significant challenges due to the increasing number of wireless devices. Path loss has a landmark importance in network performance optimization, and accurate prediction of the path loss, which characterizes the attenuation of signal power during transmission, is critical for effective network planning, coverage estimation, and optimization. In this sense, we utilize machine learning (ML) methods, which overcome conventional path loss prediction models drawbacks, for path loss prediction in a 5G network system to facilitate more accurate network planning, resource optimization, and performance improvement in wireless communication systems. To this end, we utilize a novel approach, nested cross validation scheme, with ML to prevent overfitting, thereby getting better generalization error and stable results for ML deployment. First, we acquire a publicly available dataset obtained through a comprehensive measurement campaign conducted in an urban macro-cell scenario located in Beijing, China. The dataset includes crucial information such as longitude, latitude, elevation, altitude, clutter height, and distance, which are utilized as essential features to predict the path loss in the 5G network system. We deploy Support Vector Regression (SVR), CatBoost Regression (CBR), eXtreme Gradient Boosting Regression (XGBR), Artificial Neural Network (ANN), and Random Forest (RF) methods to predict the path loss, and compare the prediction results in terms of Mean Absolute Error (MAE) and Mean Square Error (MSE). As per obtained results, XGBR outperforms the rest of the methods. It outperforms CBR with a slight performance differences by 0.4% and 10% in terms of MAE and MSE metrics, respectively. On the other hand, it outperforms the rest of the methods with clear performance differences. Ultimately, the paper presents ML deployment with the novel approach from which network planning, resource optimization, and performance improvement in wireless communication systems will benefit as well according to the obtained results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
科研通AI5应助James采纳,获得10
55秒前
啦啊啦啦啦应助柏风华采纳,获得20
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
bc应助科研通管家采纳,获得20
1分钟前
柏风华完成签到,获得积分10
2分钟前
2分钟前
2分钟前
知行者完成签到 ,获得积分10
3分钟前
Jasmineyfz完成签到 ,获得积分10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
yinlao完成签到,获得积分10
4分钟前
大模型应助南瓜采纳,获得10
5分钟前
bc应助科研通管家采纳,获得30
5分钟前
bc应助科研通管家采纳,获得30
5分钟前
bc应助科研通管家采纳,获得30
5分钟前
5分钟前
南瓜发布了新的文献求助10
5分钟前
6分钟前
南瓜完成签到,获得积分10
6分钟前
6分钟前
James发布了新的文献求助10
6分钟前
小蘑菇应助科研通管家采纳,获得10
7分钟前
andrele应助科研通管家采纳,获得10
7分钟前
高数数完成签到 ,获得积分10
8分钟前
9分钟前
moroa完成签到,获得积分10
9分钟前
___淡完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
Eason完成签到,获得积分10
10分钟前
史前巨怪完成签到,获得积分10
10分钟前
ycw7777完成签到,获得积分10
11分钟前
幽默发夹发布了新的文献求助10
12分钟前
幽默发夹完成签到,获得积分10
12分钟前
13分钟前
哇哈哈发布了新的文献求助10
13分钟前
Jasper应助哇哈哈采纳,获得10
13分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795558
求助须知:如何正确求助?哪些是违规求助? 3340610
关于积分的说明 10300696
捐赠科研通 3057127
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529