Synergistic activation of anionic redox through substitution strategy to design low-cost Co/Ni-free layered oxide cathode materials for high-performance Na-ion batteries

阴极 氧化还原 电化学 材料科学 氧化物 化学工程 离子 电极 化学 冶金 物理化学 工程类 有机化学
作者
Tingting Wei,Ying Li,Yuhao Chen,Peng‐Fei Wang,Ying Xie,Ting‐Feng Yi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:474: 145844-145844 被引量:43
标识
DOI:10.1016/j.cej.2023.145844
摘要

P2-type layered oxides with low Na+ diffusion barriers have emerged as promising cathode materials for sodium-ion batteries (SIBs) due to excellent cycle stability and rate performance. Among them, Co/Ni-free Fe-Mn-Cu based cathode materials have gained significant attention owing to their abundance, low cost, and environmentally friendless. However, their practical application has been hindered by irreversible phase changes during the charging/discharging process, leading to rapid capacity decay. To address this issue, the inactive element (Titanium) is introduced in Na0.70Fe0.20Cu0.20Mn0.60O2 oxides to mitigate the detrimental phase transitions and enhance electrochemical performance by facilitating anionic redox reactions. The resulting Na0.70Fe0.20Cu0.20Mn0.55Ti0.05O2 (NFCMT-0.05) cathode material exhibits a high initial discharge specific capacity of 186 mAh/g at 0.1C and superior cycling stability, with a capacity retention of 83.5% after 400 cycles at 5C between 2.0 and 4.3 V. Furthermore, the NFCMT-0.05 maintains P2 phase structure throughout the entire sodiation/desodiation process, and the reversible oxygen-related redox reaction provides additional discharge capacity for the Fe-Mn-based cathode above 4.1 V. The NFCMT-0.05 also demonstrates fast Na+ ion transfer kinetics and excellent rate performance, delivering a discharge capacity at 5C that is 60% of that at 0.1C. The DFT calculation confirms that the introduction of titanium effectively reduces the volume change and suppresses the relative slip of adjacent TMO6 layers. As a result, Ti-doping is instrumental in improving the cycle stability of NFCMT. This work offers a low-cost strategy for constructing high-performance cathode materials for SIBs. offering promising prospects for the development of efficient and affordable energy storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的千琴完成签到,获得积分10
刚刚
派大星的海洋裤完成签到,获得积分10
刚刚
2秒前
jie完成签到,获得积分10
2秒前
优秀的学姐完成签到,获得积分20
2秒前
Ashuno完成签到,获得积分20
4秒前
孙大包完成签到,获得积分10
4秒前
5秒前
Mine_cherry应助一个西藏采纳,获得10
6秒前
张鹏举完成签到,获得积分10
7秒前
四十四次日落完成签到,获得积分10
8秒前
嘟噜噜发布了新的文献求助10
9秒前
9秒前
BowieHuang应助张鹏举采纳,获得10
10秒前
JiangWen完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
柒z完成签到,获得积分10
12秒前
13秒前
怕孤单的忆灵完成签到,获得积分10
14秒前
15秒前
可爱的函函应助家夜雪采纳,获得10
17秒前
tangyawen发布了新的文献求助10
20秒前
lina发布了新的文献求助10
20秒前
Iris完成签到 ,获得积分10
22秒前
23秒前
23秒前
24秒前
27秒前
28秒前
香蕉飞瑶完成签到 ,获得积分10
28秒前
loulan发布了新的文献求助10
29秒前
30秒前
所所应助贵金属采纳,获得10
31秒前
buno应助lby采纳,获得10
31秒前
独特绣连完成签到,获得积分20
31秒前
an发布了新的文献求助10
32秒前
多情赛君完成签到,获得积分10
32秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851