Optimizing the strain engineering process for industrial scale production of bio-based molecules

生物制造 合成生物学 生化工程 过程(计算) 计算机科学 基因组工程 代谢工程 拉伤 应变工程 工业生物技术 工程类 基因组 计算生物学 生物技术 生物 材料科学 基因组编辑 生物化学 解剖 基因 冶金 操作系统
作者
Eric Abbate,Jennifer Andrion,Amanda Reider Apel,M. S. Biggs,Julie E. Chaves,Ka Chun Cheung,Anthony Ciesla,Alia Clark-ElSayed,Michael R. Clay,Riarose Contridas,Richard J. Fox,G.F. Hein,Dan Held,Andrew A. Horwitz,Stefan Jenkins,K. Kalbarczyk,Nandini Krishnamurthy,Mona Mirsiaghi,Katherine Noon,Michael Rowe,Tyson R. Shepherd,Katia Tarasava,Theodore M. Tarasow,Drew Thacker,Gianluca Villa,Krishna Yerramsetty
出处
期刊:Journal of Industrial Microbiology & Biotechnology [Springer Science+Business Media]
标识
DOI:10.1093/jimb/kuad025
摘要

Biomanufacturing could contribute as much as $30 trillion to the global economy by 2030. But the success of the growing bioeconomy depends on our ability to manufacture high-performing strains in a time- and cost-effective manner. The Design-Build-Test-Learn (DBTL) framework has proven to be an effective strain engineering approach. Significant improvements have been made in genome engineering, genotyping, and phenotyping throughput over the last couple of decades that have greatly accelerated the DBTL cycles. However, to achieve a radical reduction in strain development time and cost, we need to look at the strain engineering process through a lens of optimizing the whole cycle, as opposed to simply increasing throughput at each stage. We propose an approach that integrates all four stages of the DBTL cycle and takes advantage of the advances in computational design, high-throughput genome engineering, and phenotyping methods, as well as machine learning tools for making predictions about strain scaleup performance. In this perspective, we discuss the challenges of industrial strain engineering, outline the best approaches to overcoming these challenges, and showcase examples of successful strain engineering projects for production of heterologous proteins, amino acids, and small molecules, as well as improving tolerance, fitness, and de-risking the scaleup of industrial strains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Cc采纳,获得10
1秒前
高高兴兴完成签到,获得积分10
1秒前
韭酱完成签到,获得积分10
2秒前
3秒前
Rae sremer发布了新的文献求助10
3秒前
阿灵发布了新的文献求助30
3秒前
g7001完成签到,获得积分10
4秒前
lb001发布了新的文献求助30
4秒前
科研通AI2S应助慕容真采纳,获得10
5秒前
秀丽文轩发布了新的文献求助10
6秒前
6秒前
6秒前
爱笑的大白菜完成签到 ,获得积分10
7秒前
Emanuel完成签到,获得积分10
7秒前
7秒前
高高兴兴发布了新的文献求助10
8秒前
充电宝应助Dd采纳,获得10
10秒前
TK完成签到 ,获得积分0
10秒前
11秒前
小于发布了新的文献求助10
11秒前
12秒前
yk关注了科研通微信公众号
12秒前
gege完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
华仔应助独特乘云采纳,获得10
14秒前
白开水完成签到,获得积分10
14秒前
15秒前
冰柠橙夏发布了新的文献求助200
15秒前
16秒前
凶狠的期待完成签到,获得积分10
16秒前
Iris完成签到,获得积分20
16秒前
赖星星发布了新的文献求助10
17秒前
桐桐应助Rae sremer采纳,获得10
17秒前
顾思凡完成签到,获得积分20
17秒前
Cc发布了新的文献求助10
18秒前
Simon发布了新的文献求助10
19秒前
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802119
求助须知:如何正确求助?哪些是违规求助? 3347873
关于积分的说明 10335457
捐赠科研通 3063893
什么是DOI,文献DOI怎么找? 1682232
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763973