Profiles of tobacco smokers and ex-smokers in a large-scale random sample survey across Wales: an unsupervised machine-learning cluster analysis

样品(材料) 比例(比率) 星团(航天器) 人工智能 计算机科学 机器学习 心理学 地理 地图学 化学 色谱法 程序设计语言
作者
Annette Evans,Rhian Hughes,Louisa Nolan,Kirsty Little,Liz Newbury-Davies,Alisha Davies
出处
期刊:The Lancet [Elsevier BV]
卷期号:402: S7-S7 被引量:2
标识
DOI:10.1016/s0140-6736(23)02070-6
摘要

BackgroundThe Welsh government recently set a target to be smoke-free by 2030, which means reducing the prevalence of tobacco smoking in adults to 5% by then. The goal is to improve health and population life expectancy. To support this strategy, we identified profile groups with different sets of socioeconomic and demographic characteristics within the population of smokers. We compared these profiles to those identified in the ex-smoker population to provide a broader understanding of smokers and inform targeting of interventions and policy.MethodsWe did a cross-sectional study using data from the National Survey for Wales. This survey is a random sample telephone survey of individuals aged 16 years and older across Wales carried out from Sept 1, 2021 to Jan 31, 2022, weighted to be representative of the Welsh population. For the smoking subgroup, we did a weighted hierarchical cluster analysis with multiple imputation to impute missing data and repeated it for ex-smokers. In total, 63 survey variables were used in the analysis. These variables included smoking history, e-cigarette use, sociodemographics, lifestyle factors, individual-level deprivation, general health and long-term conditions, mental health, and wellbeing.FindingsAmong the 6407 respondents (weighted proportions: 49% male, 51% female; 28% aged 16–34 years, 46% aged 35–44 years, 26% aged ≥65 years; 95% white, 5% other ethnicity), 841 (13%) smoked and 2136 (33%) were ex-smokers. Four distinctive profiles of smokers were identified, the groups were of relatively comparable size and characterised by similarities described as (1) high-risk alcohol drinkers and without children; (2) single, mostly in social housing, and poor health and mental health; (3) mostly single, younger, tried e-cigarettes, and poor mental health; (4) older couples and poor health; when comparing the groups with each other. Cluster quality and validation statistics were considered fair: silhouette coefficient=0·09, Dunn index (Dunn2)=1·06. Generally, ex-smoker clusters differed from smoking clusters because of themes related to increased sickness, better affluence, employment, and older age (≥75 years).InterpretationThis study suggests that not all smokers are the same, and they do not fall into one coherent group. Smoking cessation interventions to improve the health of ageing populations might need a different approach to consider a wider context or motivations to inform targeted quitting. It is acknowledged that smoking might be underreported because of perceived social unacceptability.FundingPublic Health Wales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AAA小秦科研1412完成签到,获得积分10
刚刚
刚刚
1秒前
月神满月发布了新的文献求助50
1秒前
Samsu完成签到 ,获得积分10
2秒前
风趣问雁完成签到 ,获得积分10
2秒前
典雅的俊驰应助CC采纳,获得30
3秒前
终梦应助十公里采纳,获得10
3秒前
玲儿完成签到,获得积分10
4秒前
zuijiasunyou完成签到,获得积分10
4秒前
LiuYing完成签到,获得积分10
4秒前
flippeed完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
肿瘤柳叶刀完成签到,获得积分10
6秒前
蓝桉完成签到,获得积分10
7秒前
7秒前
友好傲白完成签到,获得积分10
7秒前
wfw驳回了无花果应助
7秒前
8秒前
8秒前
3719left完成签到,获得积分10
10秒前
11秒前
共享精神应助LiuYing采纳,获得10
11秒前
11秒前
华仔应助久久采纳,获得10
11秒前
小木发布了新的文献求助10
11秒前
科研通AI5应助joruruo采纳,获得10
11秒前
12秒前
袁钢发布了新的文献求助10
12秒前
鲜艳的翠曼完成签到,获得积分10
12秒前
脑洞疼应助lll采纳,获得10
12秒前
12秒前
叫滚滚发布了新的文献求助30
13秒前
Marvel发布了新的文献求助10
14秒前
咕噜应助饱满的小熊猫采纳,获得30
14秒前
于清绝完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818231
求助须知:如何正确求助?哪些是违规求助? 3361374
关于积分的说明 10412557
捐赠科研通 3079607
什么是DOI,文献DOI怎么找? 1691291
邀请新用户注册赠送积分活动 814471
科研通“疑难数据库(出版商)”最低求助积分说明 768178