A Real-Time Cross-Domain Wi-Fi-Based Gesture Recognition System for Digital Twins

计算机科学 手势识别 手势 可穿戴计算机 人工智能 计算机视觉 人机交互 嵌入式系统
作者
Jian Su,Qianguo Mao,Zhenlong Liao,Zhengguo Sheng,Chenxi Huang,Xuedong Zhang
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3690-3701
标识
DOI:10.1109/jsac.2023.3310073
摘要

The rapid development of Internet of Things has led more realization of digital twins (DT), such as healthcare, smart homes, virtual reality, etc., gesture recognition is a fundamental component of DT. Its implementation can provide users with personalized services or improved human-computer interaction, such as smart home control, in-car interaction, etc., most of existing gesture recognition methods are based on vision or wearable device. However, the vision-based methods face the problem of privacy breach, whereas the wearable-based methods may bring inconvenience to users. With the wide deployment of Wi-Fi networks, lots of consumer devices are widely accessible in people’s homes. Motivated by the fact that Wi-Fi signal propagation can be affected by human motion, the opportunity to use Wi-Fi signals for gesture recognition can be further explored. However, the challenge is that the received Wi-Fi signal shows great differences when the same person performs the same gesture in different environments or different person performs the same gesture in the same environment. Therefore, the signal alignment across different domain needs to be solved. In this paper, we propose a gesture recognition system named Phase-Attention-based-Conv-CSI (PAC-CSI), which consists of two modules: data processing and gesture recognition. In the data processing module, we eliminate random phase noise in channel state information (CSI) and perform phase calibration. In the gesture recognition module, we feed the processed phase sequence into a lightweight deep neural network for gesture recognition. PAC-CSI can obtain the gesture category in about 200ms, which can meets the real-time requirements of DT. The gesture recognition accuracy of our proposed system in a single domain is 99.46%, and its performance across new locations, orientations, users, and environments is 98.77%, 98.90%, 97.54%, and 96.47%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的冷雪完成签到 ,获得积分10
3秒前
5秒前
姜彦乔完成签到,获得积分10
5秒前
ccc完成签到,获得积分10
5秒前
健忘的灵槐完成签到,获得积分10
6秒前
11秒前
11秒前
姜彦乔发布了新的文献求助10
12秒前
华仔应助萧一采纳,获得10
12秒前
余味应助zorro3574采纳,获得10
12秒前
Li完成签到,获得积分10
13秒前
li发布了新的文献求助30
14秒前
8888拉完成签到,获得积分10
14秒前
无何有之乡完成签到,获得积分10
14秒前
Focus_BG完成签到,获得积分10
17秒前
17秒前
王天一完成签到,获得积分10
17秒前
17秒前
18秒前
Lucky潇潇完成签到,获得积分10
18秒前
DrLuffy完成签到,获得积分10
19秒前
可乐SAMA发布了新的文献求助10
23秒前
猕猴桃完成签到,获得积分10
25秒前
后来应助愤怒的寻芹采纳,获得10
25秒前
x5kyi完成签到,获得积分10
27秒前
tym完成签到 ,获得积分10
28秒前
28秒前
66发完成签到,获得积分10
29秒前
萧一发布了新的文献求助10
31秒前
32秒前
青青河边草完成签到 ,获得积分10
33秒前
幽默的月光完成签到,获得积分10
34秒前
34秒前
11222浅发布了新的文献求助10
35秒前
腼腆的缘分完成签到,获得积分10
35秒前
36秒前
年轻晓露完成签到,获得积分20
36秒前
qiaoxi完成签到,获得积分10
37秒前
小橘子完成签到 ,获得积分10
37秒前
萧一完成签到,获得积分10
38秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728