A Real-Time Cross-Domain Wi-Fi-Based Gesture Recognition System for Digital Twins

计算机科学 手势识别 手势 可穿戴计算机 人工智能 计算机视觉 人机交互 嵌入式系统
作者
Jian Su,Qianguo Mao,Zhenlong Liao,Zhengguo Sheng,Chenxi Huang,Xuedong Zhang
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3690-3701
标识
DOI:10.1109/jsac.2023.3310073
摘要

The rapid development of Internet of Things has led more realization of digital twins (DT), such as healthcare, smart homes, virtual reality, etc., gesture recognition is a fundamental component of DT. Its implementation can provide users with personalized services or improved human-computer interaction, such as smart home control, in-car interaction, etc., most of existing gesture recognition methods are based on vision or wearable device. However, the vision-based methods face the problem of privacy breach, whereas the wearable-based methods may bring inconvenience to users. With the wide deployment of Wi-Fi networks, lots of consumer devices are widely accessible in people’s homes. Motivated by the fact that Wi-Fi signal propagation can be affected by human motion, the opportunity to use Wi-Fi signals for gesture recognition can be further explored. However, the challenge is that the received Wi-Fi signal shows great differences when the same person performs the same gesture in different environments or different person performs the same gesture in the same environment. Therefore, the signal alignment across different domain needs to be solved. In this paper, we propose a gesture recognition system named Phase-Attention-based-Conv-CSI (PAC-CSI), which consists of two modules: data processing and gesture recognition. In the data processing module, we eliminate random phase noise in channel state information (CSI) and perform phase calibration. In the gesture recognition module, we feed the processed phase sequence into a lightweight deep neural network for gesture recognition. PAC-CSI can obtain the gesture category in about 200ms, which can meets the real-time requirements of DT. The gesture recognition accuracy of our proposed system in a single domain is 99.46%, and its performance across new locations, orientations, users, and environments is 98.77%, 98.90%, 97.54%, and 96.47%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
孙壮壮完成签到,获得积分10
2秒前
刘佳玮完成签到,获得积分20
2秒前
3秒前
4秒前
wanci应助kk采纳,获得10
4秒前
5秒前
5秒前
樱桃儿发布了新的文献求助10
6秒前
hyqq完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
boo完成签到,获得积分10
8秒前
梨里发布了新的文献求助10
8秒前
Lucas应助星星采纳,获得10
8秒前
10秒前
时光完成签到,获得积分10
11秒前
12秒前
hyqq发布了新的文献求助10
12秒前
花花完成签到,获得积分10
12秒前
语物完成签到,获得积分10
13秒前
浩瀚发布了新的文献求助10
15秒前
Kawhi完成签到,获得积分10
15秒前
科研混子发布了新的文献求助10
16秒前
打打应助siri1313采纳,获得10
16秒前
深情安青应助QIAO采纳,获得10
17秒前
17秒前
科研通AI6应助梨里采纳,获得10
17秒前
赘婿应助LUJL采纳,获得10
19秒前
狄从梦完成签到,获得积分10
19秒前
老毛发布了新的文献求助10
19秒前
21秒前
深情安青应助靜心采纳,获得10
21秒前
狄从梦发布了新的文献求助10
22秒前
科研通AI6应助想读博采纳,获得10
24秒前
xjcy应助树123采纳,获得10
25秒前
28秒前
我是老大应助万书白采纳,获得10
30秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4292685
求助须知:如何正确求助?哪些是违规求助? 3819384
关于积分的说明 11959621
捐赠科研通 3462774
什么是DOI,文献DOI怎么找? 1899436
邀请新用户注册赠送积分活动 947684
科研通“疑难数据库(出版商)”最低求助积分说明 850398