Self-Supervised EEG Representation Learning with Contrastive Predictive Coding for Post-Stroke Patients

运动表象 计算机科学 脑-机接口 脑电图 人工智能 特征学习 聚类分析 自回归模型 特征(语言学) 解码方法 编码器 语音识别 机器学习 模式识别(心理学) 心理学 数学 精神科 哲学 计量经济学 操作系统 电信 语言学
作者
Fangzhou Xu,Yihao Yan,Jianqun Zhu,Xinyi Chen,Licai Gao,Yanbing Liu,Weiyou Shi,Yitai Lou,Wei Wang,Jiancai Leng,Yang Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (12) 被引量:7
标识
DOI:10.1142/s0129065723500661
摘要

Stroke patients are prone to fatigue during the EEG acquisition procedure, and experiments have high requirements on cognition and physical limitations of subjects. Therefore, how to learn effective feature representation is very important. Deep learning networks have been widely used in motor imagery (MI) based brain-computer interface (BCI). This paper proposes a contrast predictive coding (CPC) framework based on the modified s-transform (MST) to generate MST-CPC feature representations. MST is used to acquire the temporal-frequency feature to improve the decoding performance for MI task recognition. EEG2Image is used to convert multi-channel one-dimensional EEG into two-dimensional EEG topography. High-level feature representations are generated by CPC which consists of an encoder and autoregressive model. Finally, the effectiveness of generated features is verified by the k-means clustering algorithm. It can be found that our model generates features with high efficiency and a good clustering effect. After classification performance evaluation, the average classification accuracy of MI tasks is 89% based on 40 subjects. The proposed method can obtain effective feature representations and improve the performance of MI-BCI systems. By comparing several self-supervised methods on the public dataset, it can be concluded that the MST-CPC model has the highest average accuracy. This is a breakthrough in the combination of self-supervised learning and image processing of EEG signals. It is helpful to provide effective rehabilitation training for stroke patients to promote motor function recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材1完成签到 ,获得积分10
1秒前
L_Gary完成签到 ,获得积分10
3秒前
舒心平蝶完成签到 ,获得积分10
5秒前
务实完成签到 ,获得积分10
6秒前
nimeng123完成签到 ,获得积分10
8秒前
小young完成签到 ,获得积分10
8秒前
小谢完成签到 ,获得积分10
8秒前
tao完成签到 ,获得积分10
9秒前
12秒前
薇洛的打火机完成签到 ,获得积分10
17秒前
研友_89N27L完成签到,获得积分10
17秒前
18秒前
19秒前
fishhh完成签到,获得积分10
22秒前
阿泽完成签到 ,获得积分10
23秒前
24秒前
平头哥哥完成签到 ,获得积分10
24秒前
泡泡茶壶o完成签到 ,获得积分10
25秒前
薪火之源完成签到,获得积分10
26秒前
26秒前
JiangY完成签到,获得积分10
27秒前
xiaofenzi完成签到,获得积分10
28秒前
Shaynin完成签到,获得积分10
28秒前
不过尔尔完成签到 ,获得积分10
28秒前
独角大盗完成签到 ,获得积分10
31秒前
steven完成签到 ,获得积分10
31秒前
Xu完成签到 ,获得积分10
34秒前
张一完成签到,获得积分10
36秒前
懒猫完成签到,获得积分10
37秒前
Thien应助科研通管家采纳,获得10
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
38秒前
Thien应助科研通管家采纳,获得10
38秒前
顾矜应助科研通管家采纳,获得30
38秒前
38秒前
阳光的凡阳完成签到 ,获得积分10
38秒前
跳脚的虾完成签到 ,获得积分10
41秒前
xwl9955发布了新的文献求助10
42秒前
罗氏集团完成签到,获得积分10
44秒前
若若1223完成签到 ,获得积分10
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795626
求助须知:如何正确求助?哪些是违规求助? 3340699
关于积分的说明 10301063
捐赠科研通 3057238
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626