Self-Supervised EEG Representation Learning with Contrastive Predictive Coding for Post-Stroke Patients

运动表象 计算机科学 脑-机接口 脑电图 人工智能 特征学习 聚类分析 自回归模型 特征(语言学) 解码方法 编码器 语音识别 机器学习 模式识别(心理学) 心理学 数学 精神科 哲学 计量经济学 操作系统 电信 语言学
作者
Fangzhou Xu,Yihao Yan,Jianqun Zhu,Xinyi Chen,Licai Gao,Yanbing Liu,Weiyou Shi,Yitai Lou,Wei Wang,Jiancai Leng,Yang Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (12) 被引量:9
标识
DOI:10.1142/s0129065723500661
摘要

Stroke patients are prone to fatigue during the EEG acquisition procedure, and experiments have high requirements on cognition and physical limitations of subjects. Therefore, how to learn effective feature representation is very important. Deep learning networks have been widely used in motor imagery (MI) based brain-computer interface (BCI). This paper proposes a contrast predictive coding (CPC) framework based on the modified s-transform (MST) to generate MST-CPC feature representations. MST is used to acquire the temporal-frequency feature to improve the decoding performance for MI task recognition. EEG2Image is used to convert multi-channel one-dimensional EEG into two-dimensional EEG topography. High-level feature representations are generated by CPC which consists of an encoder and autoregressive model. Finally, the effectiveness of generated features is verified by the k-means clustering algorithm. It can be found that our model generates features with high efficiency and a good clustering effect. After classification performance evaluation, the average classification accuracy of MI tasks is 89% based on 40 subjects. The proposed method can obtain effective feature representations and improve the performance of MI-BCI systems. By comparing several self-supervised methods on the public dataset, it can be concluded that the MST-CPC model has the highest average accuracy. This is a breakthrough in the combination of self-supervised learning and image processing of EEG signals. It is helpful to provide effective rehabilitation training for stroke patients to promote motor function recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助含糊的文涛采纳,获得10
刚刚
刚刚
1秒前
2秒前
莎莎完成签到,获得积分10
2秒前
hanwenzzz发布了新的文献求助10
3秒前
CodeCraft应助姜姜采纳,获得10
3秒前
Z123完成签到,获得积分10
3秒前
3秒前
卡坦精发布了新的文献求助10
3秒前
幼萱发布了新的文献求助10
4秒前
5秒前
滚动星发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
小王完成签到,获得积分10
7秒前
胡说驳回了乐乐应助
7秒前
明理丹烟发布了新的文献求助10
8秒前
9℃发布了新的文献求助10
8秒前
9秒前
博修发布了新的文献求助10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得30
10秒前
shea应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
May应助科研通管家采纳,获得20
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
Lucas应助ZKK采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
Lucas应助Mansis采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
11秒前
小蘑菇应助花花采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933802
求助须知:如何正确求助?哪些是违规求助? 3479035
关于积分的说明 11003684
捐赠科研通 3208855
什么是DOI,文献DOI怎么找? 1773399
邀请新用户注册赠送积分活动 860392
科研通“疑难数据库(出版商)”最低求助积分说明 797656