The degradation of bisphenol-A organic pollutant using the dispersal of TiO2 nanorods onto the partial reduction of graphene oxide nanosheets

污染物 降级(电信) 纳米棒 石墨烯 双酚A 材料科学 氧化物 化学工程 还原(数学) 环境化学 纳米技术 化学 有机化学 环氧树脂 电信 数学 计算机科学 几何学 工程类
作者
Sultan Alomairy,Lalitha Gnanasekaran,Saravanan Rajendran,Walaa F. Alsanie
出处
期刊:Chemosphere [Elsevier]
卷期号:342: 140143-140143 被引量:4
标识
DOI:10.1016/j.chemosphere.2023.140143
摘要

The notion of innovative combinations of semiconducting metal oxides for photocatalytic destruction is a key factor in the removal of environmental contaminants. However, for the first time, the combination was made possible for the aforementioned reason by embedding one-dimensional titanium dioxide (TiO2) semiconductor nanorods on two-dimensional rGO (reduced graphene oxide) nanosheets utilizing hydrothermal and a modified Hummers' method. By applying several sophisticated procedures, the properties of these catalysts were found, and then the degradation of BPA (bisphenol-A) was examined with UV and visible light sources. Further, all the analyses were performed on pure TiO2 material. As a result of the synergistic interaction between TiO2 and rGO, the rGO-TiO2 catalyst produced a favorable photocatalytic outcome. The structural investigation of rGO-TiO2 has confirmed that the TiO2 was in anatase phase along with GO and rGO peaks, and the morphological characterization showed that the TiO2 nanorods were integrated randomly into the rGO nanosheets along with defective sites. Also, adding rGO to TiO2 causes charge separation, and π–π interactions to improve the visible light absorption range. In this study, the main model organic component in the photocatalytic degradation is bisphenol-A (BPA). During visible light irradiation, the OH radicals were finally produced by the redox reactions. Furthermore, the rGO surface adsorbs the phenol molecules due to graphene π–π interactions, thus narrowing the band gap and increasing the efficiency of BPA degradation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小小叶完成签到,获得积分10
3秒前
4秒前
Kka完成签到 ,获得积分10
4秒前
伯赏秋白完成签到,获得积分10
5秒前
小小叶发布了新的文献求助10
6秒前
Criminology34应助杨张浩采纳,获得10
8秒前
Dawn完成签到 ,获得积分10
8秒前
廖廖球完成签到,获得积分10
9秒前
cc发布了新的文献求助10
10秒前
快帮我找找完成签到,获得积分10
11秒前
11秒前
爆米花应助阿鹏采纳,获得10
12秒前
无极微光应助十六采纳,获得20
13秒前
黑猩123完成签到,获得积分10
13秒前
13秒前
顶天立地发布了新的文献求助10
13秒前
MchemG应助mignonettely采纳,获得10
14秒前
14秒前
平淡惜天关注了科研通微信公众号
14秒前
橘子味的橙子完成签到,获得积分10
15秒前
17秒前
17秒前
18秒前
代111应助muchen采纳,获得10
19秒前
19秒前
白枫完成签到 ,获得积分0
19秒前
20秒前
脆脆鲨完成签到,获得积分10
22秒前
zhuxiaonian完成签到,获得积分10
22秒前
SciGPT应助单薄的发卡采纳,获得10
22秒前
22秒前
JKL关闭了JKL文献求助
23秒前
鄂坤发布了新的文献求助30
23秒前
xh发布了新的文献求助10
23秒前
ASDS完成签到,获得积分10
23秒前
xh发布了新的文献求助10
23秒前
xh发布了新的文献求助10
24秒前
xh发布了新的文献求助10
24秒前
xh发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603979
求助须知:如何正确求助?哪些是违规求助? 4688850
关于积分的说明 14856611
捐赠科研通 4695971
什么是DOI,文献DOI怎么找? 2541092
邀请新用户注册赠送积分活动 1507256
关于科研通互助平台的介绍 1471832