AS3ITransUNet: Spatial–Spectral Interactive Transformer U-Net With Alternating Sampling for Hyperspectral Image Super-Resolution

增采样 高光谱成像 计算机科学 人工智能 模式识别(心理学) 图像分辨率 光谱带 编码器 卷积神经网络 计算机视觉 遥感 图像(数学) 地理 操作系统
作者
Qin Xu,Shiji Liu,Jiahui Wang,Bo Jiang,Jin Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:12
标识
DOI:10.1109/tgrs.2023.3312280
摘要

Single hyperspectral image (HSI) super-resolution (SR) is an important topic in remote sensing field. However, existing HSI SR methods mainly use the feed-forward upsampling technique and convolutional neural network (CNN) to learn the feature representation, failing to learn the complex mapping relationship between low-resolution (LR) and high-resolution (HR) and long-range joint spectral and spatial features. To address this issue, in this paper, we propose the Spatial-Spectral Interactive Transformer U-Net with Alternating Sampling (AS 3 ITransUNet) for the HSI SR task. In this method, to mitigate the computational burden resulting from the high spectral dimension of HSI, a group reconstruction strategy is adopted. To effectively explore the hierarchical features of HSI, the U-Net with alternating upsampling and downsampling is designed that allocates the task of learning the complex mapping relationship to each stage of U-Net. To fully extract the spatial-spectral features of HSI, we propose the spatial-spectral interactive transformer (SSIT) block and integrate it into the encoder and decoder of U-Net. The SSIT block contains a cross-branch bidirectional interaction module, which further captures the complementary information between spatial and spectral dimensions. Moreover, the multi-stage complementary information learning (MFEL) is proposed to capture the complementary information in the adjacent HSI groups for recovering the absent details in the current HSI group. The experiments on the three benchmark datasets demonstrate that the proposed AS 3 ITransUNet can effectively improve the spatial resolution and preserve the spectral information at different scales. Models and code are available at https://github.com/liushiji666/AS3-ITransUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
小马甲应助墨墨采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Hayat应助科研通管家采纳,获得30
1秒前
orixero应助科研通管家采纳,获得30
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
且慢应助科研通管家采纳,获得20
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
小b亮发布了新的文献求助10
1秒前
充电宝应助刘凯岳采纳,获得10
1秒前
M.发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
ji_weiyi完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
终梦应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
小二郎应助清欢采纳,获得10
2秒前
3秒前
丘比特应助yangyog采纳,获得20
4秒前
4秒前
5秒前
H0000发布了新的文献求助10
5秒前
SciGPT应助任性映秋采纳,获得10
6秒前
研友_VZG7GZ应助星辰不坠落采纳,获得10
7秒前
可能不够完成签到,获得积分10
7秒前
ceng发布了新的文献求助30
8秒前
852应助汉字采纳,获得10
8秒前
M.完成签到,获得积分10
8秒前
李理完成签到,获得积分20
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468475
求助须知:如何正确求助?哪些是违规求助? 4571886
关于积分的说明 14332538
捐赠科研通 4498526
什么是DOI,文献DOI怎么找? 2464602
邀请新用户注册赠送积分活动 1453226
关于科研通互助平台的介绍 1427841