AS3ITransUNet: Spatial–Spectral Interactive Transformer U-Net With Alternating Sampling for Hyperspectral Image Super-Resolution

增采样 高光谱成像 计算机科学 人工智能 模式识别(心理学) 图像分辨率 光谱带 编码器 卷积神经网络 计算机视觉 遥感 图像(数学) 地理 操作系统
作者
Qin Xu,Shiji Liu,Jiahui Wang,Bo Jiang,Jin Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2023.3312280
摘要

Single hyperspectral image (HSI) super-resolution (SR) is an important topic in remote sensing field. However, existing HSI SR methods mainly use the feed-forward upsampling technique and convolutional neural network (CNN) to learn the feature representation, failing to learn the complex mapping relationship between low-resolution (LR) and high-resolution (HR) and long-range joint spectral and spatial features. To address this issue, in this paper, we propose the Spatial-Spectral Interactive Transformer U-Net with Alternating Sampling (AS 3 ITransUNet) for the HSI SR task. In this method, to mitigate the computational burden resulting from the high spectral dimension of HSI, a group reconstruction strategy is adopted. To effectively explore the hierarchical features of HSI, the U-Net with alternating upsampling and downsampling is designed that allocates the task of learning the complex mapping relationship to each stage of U-Net. To fully extract the spatial-spectral features of HSI, we propose the spatial-spectral interactive transformer (SSIT) block and integrate it into the encoder and decoder of U-Net. The SSIT block contains a cross-branch bidirectional interaction module, which further captures the complementary information between spatial and spectral dimensions. Moreover, the multi-stage complementary information learning (MFEL) is proposed to capture the complementary information in the adjacent HSI groups for recovering the absent details in the current HSI group. The experiments on the three benchmark datasets demonstrate that the proposed AS 3 ITransUNet can effectively improve the spatial resolution and preserve the spectral information at different scales. Models and code are available at https://github.com/liushiji666/AS3-ITransUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mmxr发布了新的文献求助10
2秒前
大钱哥完成签到,获得积分10
2秒前
乐乐应助xi采纳,获得10
3秒前
mengxue发布了新的文献求助10
3秒前
4秒前
zzx发布了新的文献求助10
4秒前
5秒前
妮妮发布了新的文献求助10
5秒前
6秒前
打打应助Clown采纳,获得10
6秒前
6秒前
7秒前
TillySss发布了新的文献求助10
7秒前
白糖完成签到,获得积分10
7秒前
7秒前
7秒前
Jasper应助Cc采纳,获得10
7秒前
7秒前
7秒前
JamesPei应助小泰勒横着走采纳,获得10
8秒前
酷波er应助小泰勒横着走采纳,获得10
8秒前
ccz发布了新的文献求助10
8秒前
8秒前
汪洋发布了新的文献求助10
9秒前
10秒前
欣慰外绣完成签到,获得积分10
10秒前
Owen应助热心金鱼采纳,获得10
10秒前
11秒前
11秒前
1018wxy完成签到,获得积分10
11秒前
鱼儿完成签到,获得积分20
13秒前
13秒前
豆子发布了新的文献求助30
13秒前
沉静盼易发布了新的文献求助10
13秒前
星辰大海应助缥缈的铅笔采纳,获得10
15秒前
brucelee25发布了新的文献求助10
15秒前
ccz完成签到,获得积分10
15秒前
落叶应助乐枳采纳,获得10
15秒前
鱼儿发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787580
求助须知:如何正确求助?哪些是违规求助? 3333171
关于积分的说明 10259745
捐赠科研通 3048682
什么是DOI,文献DOI怎么找? 1673245
邀请新用户注册赠送积分活动 801721
科研通“疑难数据库(出版商)”最低求助积分说明 760338