Causal machine learning for single-cell genomics

计算机科学 系统生物学 基因组学 因果关系(物理学) 数据科学 人工智能 机器学习 计算生物学 生物 基因组 基因 物理 量子力学 生物化学
作者
Alejandro Tejada-Lapuerta,Paul A. Bertin,Stefan Bauer,Hananeh Aliee,Yoshua Bengio,Fabian J. Theis
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2310.14935
摘要

Advances in single-cell omics allow for unprecedented insights into the transcription profiles of individual cells. When combined with large-scale perturbation screens, through which specific biological mechanisms can be targeted, these technologies allow for measuring the effect of targeted perturbations on the whole transcriptome. These advances provide an opportunity to better understand the causative role of genes in complex biological processes such as gene regulation, disease progression or cellular development. However, the high-dimensional nature of the data, coupled with the intricate complexity of biological systems renders this task nontrivial. Within the machine learning community, there has been a recent increase of interest in causality, with a focus on adapting established causal techniques and algorithms to handle high-dimensional data. In this perspective, we delineate the application of these methodologies within the realm of single-cell genomics and their challenges. We first present the model that underlies most of current causal approaches to single-cell biology and discuss and challenge the assumptions it entails from the biological point of view. We then identify open problems in the application of causal approaches to single-cell data: generalising to unseen environments, learning interpretable models, and learning causal models of dynamics. For each problem, we discuss how various research directions - including the development of computational approaches and the adaptation of experimental protocols - may offer ways forward, or on the contrary pose some difficulties. With the advent of single cell atlases and increasing perturbation data, we expect causal models to become a crucial tool for informed experimental design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rechristal完成签到,获得积分10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
是锦锦呀发布了新的文献求助20
1秒前
rover发布了新的文献求助10
2秒前
3秒前
4秒前
JamesPei应助lululull采纳,获得10
4秒前
Lun发布了新的文献求助10
5秒前
5秒前
斯文败类应助暴躁的念之采纳,获得10
5秒前
小二完成签到,获得积分10
5秒前
镓氧锌钇铀应助TRACEY采纳,获得10
6秒前
xgg完成签到,获得积分20
6秒前
stel7发布了新的文献求助10
6秒前
yan发布了新的文献求助10
7秒前
8秒前
Martin发布了新的文献求助10
8秒前
xiayx完成签到 ,获得积分10
8秒前
大模型应助王邵梅采纳,获得10
9秒前
晏清发布了新的文献求助30
9秒前
英俊的铭应助ZhijunXiang采纳,获得10
10秒前
10秒前
午夜煎饼完成签到,获得积分10
10秒前
橙啦完成签到 ,获得积分10
11秒前
hsa_ID完成签到,获得积分20
12秒前
健壮的紫夏完成签到,获得积分10
13秒前
13秒前
浅蓝发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
hikari发布了新的文献求助10
14秒前
15秒前
15秒前
NN应助了大憨采纳,获得10
15秒前
xml完成签到,获得积分20
16秒前
等月光完成签到,获得积分10
17秒前
执着的小熊猫完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259600
求助须知:如何正确求助?哪些是违规求助? 4421190
关于积分的说明 13762060
捐赠科研通 4295031
什么是DOI,文献DOI怎么找? 2356695
邀请新用户注册赠送积分活动 1353099
关于科研通互助平台的介绍 1314206