Causal machine learning for single-cell genomics

计算机科学 系统生物学 基因组学 因果关系(物理学) 数据科学 人工智能 机器学习 计算生物学 生物 基因组 基因 生物化学 量子力学 物理
作者
Alejandro Tejada-Lapuerta,Paul A. Bertin,Stefan Bauer,Hananeh Aliee,Yoshua Bengio,Fabian J. Theis
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2310.14935
摘要

Advances in single-cell omics allow for unprecedented insights into the transcription profiles of individual cells. When combined with large-scale perturbation screens, through which specific biological mechanisms can be targeted, these technologies allow for measuring the effect of targeted perturbations on the whole transcriptome. These advances provide an opportunity to better understand the causative role of genes in complex biological processes such as gene regulation, disease progression or cellular development. However, the high-dimensional nature of the data, coupled with the intricate complexity of biological systems renders this task nontrivial. Within the machine learning community, there has been a recent increase of interest in causality, with a focus on adapting established causal techniques and algorithms to handle high-dimensional data. In this perspective, we delineate the application of these methodologies within the realm of single-cell genomics and their challenges. We first present the model that underlies most of current causal approaches to single-cell biology and discuss and challenge the assumptions it entails from the biological point of view. We then identify open problems in the application of causal approaches to single-cell data: generalising to unseen environments, learning interpretable models, and learning causal models of dynamics. For each problem, we discuss how various research directions - including the development of computational approaches and the adaptation of experimental protocols - may offer ways forward, or on the contrary pose some difficulties. With the advent of single cell atlases and increasing perturbation data, we expect causal models to become a crucial tool for informed experimental design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助xyz采纳,获得10
2秒前
3秒前
YZ完成签到 ,获得积分10
4秒前
Abiu发布了新的文献求助10
5秒前
wys完成签到 ,获得积分10
6秒前
长风完成签到,获得积分10
7秒前
谷德耐给谷德耐的求助进行了留言
8秒前
8秒前
winge完成签到,获得积分10
8秒前
华老师发布了新的文献求助10
9秒前
moumoulin1完成签到,获得积分10
11秒前
12秒前
liang发布了新的文献求助10
13秒前
15秒前
英姑应助华老师采纳,获得10
16秒前
20秒前
华老师完成签到,获得积分10
22秒前
22秒前
梦璃完成签到 ,获得积分10
24秒前
xyz发布了新的文献求助10
25秒前
打打应助茂飞采纳,获得10
27秒前
爱听歌的孤容完成签到 ,获得积分10
29秒前
慕青应助想人陪的向南采纳,获得10
29秒前
安白发布了新的文献求助10
30秒前
30秒前
31秒前
fagfagsf发布了新的文献求助10
37秒前
tttttt完成签到,获得积分10
39秒前
上善若水完成签到 ,获得积分10
41秒前
41秒前
达瓦里希完成签到 ,获得积分10
46秒前
46秒前
谷德耐给谷德耐的求助进行了留言
49秒前
Hello应助Yunus采纳,获得10
50秒前
orixero应助lv采纳,获得10
51秒前
田様应助聪明的冬瓜采纳,获得10
51秒前
bxll完成签到 ,获得积分10
54秒前
wy.he应助黑米粥采纳,获得10
55秒前
wy.he应助黑米粥采纳,获得10
56秒前
ding应助黑米粥采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777922
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214842
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315