EMO2-DETR: Efficient-Matching Oriented Object Detection With Transformers

计算机科学 二部图 冗余(工程) 目标检测 推论 人工智能 数据挖掘 图形 模式识别(心理学) 计算机视觉 理论计算机科学 操作系统
作者
Zibo Hu,Kun Gao,Xiaodian Zhang,Junwei Wang,Hong Wang,Zhijia Yang,Chenrui Li,Wei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:15
标识
DOI:10.1109/tgrs.2023.3300154
摘要

Object detection in remote sensing is a challenging task due to the arbitrary orientations of objects and the vast variation in the number of objects within a single image. For instance, one image may contain hundreds of small vehicles, while another may only have a single football field. Recently, DEtection TRansformer (DETR) and its variants have achieved great success in object detection by setting a fixed number of object queries and using bipartite graph matching for one-to-one label assignment. However, we have observed that bipartite graph matching can result in relative redundancy of object queries when the number of objects changes dramatically in an image. This relative redundancy can cause two problems: slower convergence during training and redundant bounding boxes during inference. To analyze the aforementioned problems, we proposed a metric, Redundancy of Object Query (ROQ), to quantitatively analyze the redundancy. Through experiments, we discovered that the reason for the two issues is the difficulty in distinguishing between high-quality negative samples and positive samples. In this paper, we proposed Efficient-Matching Oriented Object Detection with Transformers(EMO2-DETR) consisting of three dedicated components to address the aforementioned issues. Specifically, Reassign Bipartite Graph Matching (RBGM) is proposed to extract high-quality negative samples from the negative samples. And Ignored Sample Predicted Head (ISPH) is proposed to predict high-quality negative samples. Then, Reassigned Hungarian loss is used to better involve high-quality negative samples in the update of model parameters. Extensive experiments on DOTAv1 and DOTAv1.5 datasets demonstrated that our proposed method achieves competitive results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
机智的若灵完成签到,获得积分10
12秒前
斯文败类应助能干夏波采纳,获得10
13秒前
乙醇发布了新的文献求助10
15秒前
20秒前
隐形萃完成签到 ,获得积分10
21秒前
XY完成签到 ,获得积分10
25秒前
能干夏波发布了新的文献求助10
26秒前
传奇3应助kubi采纳,获得10
27秒前
shanmao完成签到,获得积分10
28秒前
29秒前
闪闪的斑马完成签到 ,获得积分10
30秒前
31秒前
32秒前
qianqian完成签到,获得积分10
33秒前
阿巴发布了新的文献求助10
34秒前
阿白发布了新的文献求助10
36秒前
nana完成签到 ,获得积分10
36秒前
37秒前
5823364完成签到,获得积分10
38秒前
qianqian发布了新的文献求助20
38秒前
白开水发布了新的文献求助10
40秒前
上官若男应助qianqian采纳,获得20
44秒前
所所应助阿巴采纳,获得10
48秒前
HEIKU应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
华仔应助科研通管家采纳,获得10
51秒前
HEIKU应助科研通管家采纳,获得10
51秒前
桐桐应助科研通管家采纳,获得10
51秒前
51秒前
Tingting完成签到 ,获得积分10
51秒前
51秒前
Owen应助科研通管家采纳,获得10
51秒前
51秒前
隐形曼青应助科研通管家采纳,获得10
51秒前
52秒前
52秒前
HEIKU应助科研通管家采纳,获得10
52秒前
52秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777008
求助须知:如何正确求助?哪些是违规求助? 3322389
关于积分的说明 10210090
捐赠科研通 3037746
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797711
科研通“疑难数据库(出版商)”最低求助积分说明 758040