等离子体驱动器
执行机构
参数统计
介质阻挡放电
灵敏度(控制系统)
电压
流量控制(数据)
电介质
抓住
波形
机械工程
流量(数学)
计算机科学
电极
材料科学
控制理论(社会学)
工程类
电子工程
电气工程
控制(管理)
机械
光电子学
物理
数学
电信
人工智能
统计
量子力学
程序设计语言
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2308.08437
摘要
The Dielectric Barrier Discharge (DBD) micro-plasma actuator stands out as a highly promising tool for active fluid flow control. Researchers specializing in flow control have taken a keen interest in this actuator due to its economical manufacturing, low energy consumption, compact size, lightweight nature, straightforward implementation, and absence of movable components or pneumatic/hydraulic systems. Given its extensive application, achieving the best design for plasma actuators necessitates a more profound grasp of how diverse physical factors (like electrode thickness, electrode length, dielectric thickness, and dielectric materials) and operational variables (such as applied voltage, frequency, and waveform) impact its performance. Within this article, we delve into a comprehensive assessment of both numerical and experimental investigations focused on optimizing actuator parameters. These studies can be categorized into two main groups. The initial group involves fundamental test cases conducted on flat plates, while the subsequent group pertains to modeling controlled flow in real-world scenarios, including curved surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI