Analyzing the scale dependent effect of urban building morphology on land surface temperature using random forest algorithm

比例(比率) 随机森林 形态学(生物学) 计算机科学 曲面(拓扑) 算法 环境科学 地理 数学 地图学 地质学 人工智能 几何学 古生物学
作者
Weiqun Han
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:9
标识
DOI:10.1038/s41598-023-46437-w
摘要

With continuous urban densification, revealing impacts of urban structures on thermal environment is necessary for climate adaptive design. In this study, random forest and partial difference plots were employed to depict the relative importance and interdependent effects of complex building morphology to land surface temperature (LST) variability. The six spatial factors of building density (BD), mean building height (MBH), building height difference (BHD), floor area ratio (FAR), building volume density (BVD) and mean compactness factor (MCF) were calculated at grids of 90, 300, 600 and 900 m. The results showed that BD, MCF and MBH exerted stable and significant impacts on LST with the highest prediction accuracy at 600 m neighborhood scale, and FAR and BVD were the least correlated to LST changes. Meanwhile, the influencing factors presented different correlation patterns with LST. Among them, the increase of BD had a positive linear effect on LST. MCF and MBH were nonlinearly correlated with the LST variation, and their threshold values of cooling effect were also identified. In addition to controlling BD, it also suggested that comprehensively arranging more small-volume buildings as well as increasing building height to enlarge shadow coverage were more conducive to ground heat mitigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助苏乘风采纳,获得10
1秒前
1秒前
1秒前
我是老大应助ZZ采纳,获得10
1秒前
黎明完成签到,获得积分10
2秒前
科研通AI5应助呆萌士晋采纳,获得10
2秒前
2秒前
j45mj完成签到,获得积分10
2秒前
2秒前
隐形曼青应助青易采纳,获得10
3秒前
4秒前
YY发布了新的文献求助10
4秒前
5秒前
共享精神应助Yiy采纳,获得10
5秒前
少艾发布了新的文献求助10
5秒前
识途完成签到 ,获得积分10
5秒前
wanci应助威武兔子采纳,获得10
5秒前
5秒前
5秒前
夜雨完成签到,获得积分10
6秒前
6秒前
111发布了新的文献求助10
6秒前
6秒前
北望发布了新的文献求助20
7秒前
喵喵完成签到,获得积分20
7秒前
7秒前
7秒前
Roche发布了新的文献求助10
8秒前
可爱的函函应助gxqqqqqqq采纳,获得10
8秒前
聂难敌发布了新的文献求助10
8秒前
利物鸟贝拉完成签到,获得积分10
9秒前
9秒前
9秒前
烟花应助扶溪筠采纳,获得10
9秒前
幸运的羔羊完成签到,获得积分10
9秒前
9秒前
zzyzz完成签到,获得积分10
9秒前
左白易发布了新的文献求助10
9秒前
ss2255完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835634
求助须知:如何正确求助?哪些是违规求助? 3378015
关于积分的说明 10501548
捐赠科研通 3097632
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772245