Understanding Lattice Oxygen Redox Behavior in Lithium‐Rich Manganese‐Based Layered Oxides for Lithium‐Ion and Lithium‐Metal Batteries from Reaction Mechanisms to Regulation Strategies

氧化还原 锂(药物) 材料科学 阴极 析氧 储能 纳米技术 电化学 化学 电极 热力学 物理化学 医学 物理 内分泌学 功率(物理) 冶金
作者
Chao Shen,Libin Hu,Qiming Duan,Xiaoyu Liu,Shoushuang Huang,Yong Jiang,Wenrong Li,Bing Zhao,Xueliang Sun,Jiujun Zhang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (48) 被引量:73
标识
DOI:10.1002/aenm.202302957
摘要

Abstract Lithium‐rich manganese‐based layered oxides (LMLOs) are considered to be one type of the most promising materials for next‐generation cathodes of lithium batteries due to their distinctive anionic redox processes contributing ultrahigh capacity and energy density. Unfortunately, their practical applications are still plagued by several challenges such as undesirable interfacial reactions and structural evolution, as well as voltage hysteresis/recession, in which irreversible anionic redox behavior bears the brunt as the primacy factor. Undoubtedly, a deep understanding of anionic redox reaction mechanisms and irreversible behavior of oxygen species is crucial in order to provide essential guidance for modification strategies for LMLOs. In this paper, the fundamental understanding of intricate anionic redox reaction mechanisms from thermodynamics models to kinetic anionic redox reaction pathways is comprehensively reviewed, and the existing challenges of LMLOs related with irreversible oxygen reaction behavior are analyzed. Furthermore, numerous representative modification strategies for overcoming these challenges, coupled with their underlying mechanisms for regulating anionic redox reversibility are summarized. In addition, the aspects of multi‐scale structural modifications, integration of interdisciplinary technologies, and application in quasi‐/all‐solid‐state battery systems are given some emphasis in terms of further improvement of LMLOs‐based cathode materials for advanced lithium batteries‐based energy storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助11111采纳,获得10
1秒前
rebron完成签到,获得积分10
2秒前
3秒前
我是老大应助高大的蜡烛采纳,获得10
3秒前
量子星尘发布了新的文献求助150
4秒前
Fan发布了新的文献求助10
4秒前
4秒前
酷波er应助keanu采纳,获得10
4秒前
4秒前
5秒前
王蔚染完成签到,获得积分10
5秒前
strive完成签到,获得积分20
5秒前
6秒前
小美完成签到,获得积分10
6秒前
FashionBoy应助rebron采纳,获得10
7秒前
7秒前
8秒前
8秒前
脑洞疼应助towerman采纳,获得10
8秒前
123567完成签到 ,获得积分10
9秒前
九九发布了新的文献求助10
9秒前
10秒前
10秒前
今后应助小美采纳,获得30
10秒前
Dr_Fang发布了新的文献求助10
11秒前
yanwli8发布了新的文献求助10
11秒前
12秒前
David完成签到 ,获得积分10
13秒前
CodeCraft应助賢様666采纳,获得10
14秒前
jiyang完成签到,获得积分10
14秒前
Marco发布了新的文献求助10
14秒前
大陈完成签到 ,获得积分10
14秒前
siri发布了新的文献求助10
15秒前
独孤阳光完成签到,获得积分10
15秒前
无花果应助SLY采纳,获得10
16秒前
16秒前
情怀应助冯贺琪采纳,获得10
17秒前
19秒前
你找谁哇关注了科研通微信公众号
19秒前
科研通AI5应助魁梧的成风采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089190
求助须知:如何正确求助?哪些是违规求助? 4303941
关于积分的说明 13413121
捐赠科研通 4129609
什么是DOI,文献DOI怎么找? 2261628
邀请新用户注册赠送积分活动 1265690
关于科研通互助平台的介绍 1200313