Interactive Dual Network With Adaptive Density Map for Automatic Cell Counting

计算机科学 基本事实 人工智能 发电机(电路理论) 深度学习 过程(计算) 机器学习 数据挖掘 量子力学 操作系统 物理 功率(物理)
作者
Rui Liu,Yudi Zhu,Cong Wu,Hao Guo,Wei Dai,Tianyi Wu,Min Wang,Wen J. Li,Jun Liu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6731-6743 被引量:3
标识
DOI:10.1109/tase.2023.3329973
摘要

Cell counting is an essential step in a wide variety of biomedical applications, such as blood examination, semen assessment, and cancer diagnosis. However, microscopic cell counting is conventionally labor-intensive and error-prone for experts, and most of the existing automatic approaches are confined to a specific image type. To address these challenges, we propose a new interactive dual-network framework for automatic and generic cell counting. In this framework, one deep learning model (counter) is trained to regress a density map from a given microscope image. The number of cells in that image can be estimated by performing integration over the regressed density map. Another network (ground truth generator) is employed to dynamically generate suitable ground truth based on the cell samples and the dot annotations to serve as the supervision for training the counter. The interactive process to obtain the optimal model is achieved by jointly training the counter and ground truth generator iteratively. Moreover, we design a hierarchical multi-scale attention-based architecture to act as the counter in the proposed framework. This architecture is crafted to efficiently and effectively process multi-level features, enabling accurate regression of high-quality density maps. Evaluation experiments on three public cell counting datasets demonstrate the superiority of our method. Note to Practitioners —This paper is motivated by the need for advanced healthcare in the deep learning era. As a routine assessment procedure in healthcare settings, cell counting usually suffers from poor accuracy and inefficiency. We provide a solution to ameliorate the situation by developing a deep learning-based framework for automatic cell counting. After being trained in an end-to-end manner, the dual-network system is able to estimate the number of cells from the given microscopic images more accurately than existing methods. Additionally, this method is robust in various scenarios, such as calculating cell populations in suspension and cells in tissues. In the future, the presented pipeline has the potential to be implemented by biomedical practitioners who are non-expert in programming via wrapping it into a graphical user interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaronpancn发布了新的文献求助10
1秒前
2秒前
3秒前
我是老大应助smoli采纳,获得30
4秒前
4秒前
6秒前
专注白昼完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助WWW采纳,获得10
7秒前
zhuann发布了新的文献求助10
7秒前
活在当下完成签到,获得积分10
8秒前
dropofwater完成签到,获得积分10
10秒前
思源应助灵巧的傲柏采纳,获得10
10秒前
悦子的猫酒馆完成签到,获得积分10
10秒前
宋宋完成签到 ,获得积分10
11秒前
简单幸福发布了新的文献求助10
11秒前
丘比特应助成就寒珊采纳,获得30
12秒前
13秒前
烦恼大海发布了新的文献求助30
14秒前
星辰大海应助月亮上的猫采纳,获得10
14秒前
万能图书馆应助gaogao采纳,获得10
15秒前
吴彦祖应助核桃采纳,获得10
17秒前
叶问完成签到,获得积分10
18秒前
18秒前
butterflycat发布了新的文献求助10
18秒前
18秒前
活力雁枫完成签到,获得积分10
19秒前
19秒前
深情安青应助普里克先森采纳,获得10
19秒前
19秒前
20秒前
Orange应助帅哥吴克采纳,获得10
21秒前
高高珠发布了新的文献求助10
22秒前
ray发布了新的文献求助30
23秒前
清风发布了新的文献求助10
23秒前
promise发布了新的文献求助10
23秒前
24秒前
kk99123发布了新的文献求助10
24秒前
24秒前
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456885
求助须知:如何正确求助?哪些是违规求助? 4563403
关于积分的说明 14289910
捐赠科研通 4488050
什么是DOI,文献DOI怎么找? 2458202
邀请新用户注册赠送积分活动 1448478
关于科研通互助平台的介绍 1424132