物理
Atom(片上系统)
量子光学
量子
联轴节(管道)
量子力学
统计物理学
计算机科学
材料科学
嵌入式系统
冶金
作者
Federico Roccati,Dario Cilluffo
标识
DOI:10.1103/physrevlett.133.063603
摘要
Giant artificial atoms are promising and flexible building blocks for the implementation of analog quantum simulators. They are realized via a multilocal pattern of couplings of two-level systems to a waveguide, or to a two-dimensional photonic bath. A hallmark of giant-atom physics is their non-Markovian character in the form of self-coherent feedback, leading, e.g., to nonexponential atomic decay. The timescale of their non-Markovianity is essentially given by the time delay proportional to the distance between the various coupling points. In parallel, with the state-of-the-art experimental setups, it is possible to engineer complex phases in the atom-light couplings. Such phases simulate an artificial magnetic field, yielding a chiral behavior of the atom-light system. Here, we report a surprising connection between these two seemingly unrelated features of giant atoms, showing that the chirality of a giant atom controls its Markovianity. In particular, by adjusting the couplings' phases, a giant atom can, counterintuitively, enter an exact Markovian regime, irrespectively of any inherent time delay. We illustrate this mechanism as an interference process and via a collision model picture. Our findings significantly advance the understanding of giant atom physics, and open new avenues for the control of quantum nanophotonic networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI