亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated deep learning model for automatic detection and classification of stenosis in coronary angiography

冠状动脉造影 狭窄 放射科 医学 人工智能 血管造影 深度学习 心脏病学 计算机科学 内科学 心肌梗塞
作者
Tao Wang,SU Xiao-jun,Yuchao Liang,Xu Luo,Xiao Hu,Ting Xia,Xuebin Ma,Yongchun Zuo,Xia Hui-lin,Lei Yang
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:112: 108184-108184 被引量:1
标识
DOI:10.1016/j.compbiolchem.2024.108184
摘要

Coronary artery disease poses a significant threat to human health. In clinical settings, coronary angiography remains the gold standard for diagnosing coronary heart disease. A crucial aspect of this diagnosis involves detecting arterial narrowings. Categorizing these narrowings can provide insight into whether patients should receive vascular revascularization treatment. The majority of current deep learning methods for analyzing coronary angiography are mostly confined to the theoretical research domain, with limited studies offering direct practical support to clinical practitioners. This paper proposes an integrated deep-learning model for the localization and classification of narrowings in coronary angiography images. The experimentation employed 1606 coronary angiography images obtained from 132 patients, resulting in an accuracy of 88.9 %, a recall rate of 85.4 %, an F1 score of 0.871, and a MAP value of 0.875 for vascular stenosis detection. Furthermore, we developed the "Hemadostenosis" web platform (http://bioinfor.imu.edu.cn/hemadostenosis) using Django, a highly mature HTTP framework. Users are able to submit coronary angiography image data for assessment via a visual interface. Subsequently, the system sends the images to a trained convolutional neural network model to localize and categorize the narrowings. Finally, the visualized outcomes are displayed to users and are downloadable. Our proposed approach pioneers the recognition and categorization of arterial narrowings in vascular angiography, offering practical support to clinical practitioners in their learning and diagnostic processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
沐风完成签到 ,获得积分10
27秒前
37秒前
46秒前
53秒前
乾坤侠客LW完成签到,获得积分10
1分钟前
1分钟前
1分钟前
褚曼安发布了新的文献求助10
1分钟前
1分钟前
2分钟前
钱邦国完成签到 ,获得积分10
2分钟前
寿司求学记完成签到,获得积分10
2分钟前
aoba完成签到 ,获得积分10
3分钟前
华仔应助crspy2020采纳,获得10
3分钟前
Altmimi留下了新的社区评论
3分钟前
4分钟前
4分钟前
crspy2020发布了新的文献求助10
5分钟前
5分钟前
003完成签到,获得积分10
5分钟前
天天快乐应助梧桐采纳,获得10
6分钟前
6分钟前
ding应助蛋炒饭i采纳,获得30
6分钟前
6分钟前
皮蛋robin汤完成签到 ,获得积分10
6分钟前
crspy2020完成签到,获得积分10
6分钟前
6分钟前
6分钟前
sailingluwl完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
drughunter完成签到,获得积分10
6分钟前
bkagyin应助zch19970203采纳,获得10
7分钟前
7分钟前
烟消云散完成签到,获得积分10
7分钟前
7分钟前
zch19970203发布了新的文献求助10
7分钟前
良良丸完成签到 ,获得积分10
7分钟前
7分钟前
zch19970203完成签到,获得积分10
8分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3343966
关于积分的说明 10318223
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323