微观结构
润湿
阳极
材料科学
冶金
微晶
钠
电解质
电化学
金属间化合物
化学工程
复合材料
化学
合金
电极
物理化学
工程类
作者
C.-H. Lo,Yixian Wang,Varun R. Kankanallu,Aditya Singla,Dean Yen,Xiaoyin Zheng,Kaustubh G. Naik,Bairav S. Vishnugopi,Callum J. Campbell,Vikalp Raj,Chonghang Zhao,Lu Ma,Jianming Bai,Feipeng Yang,Ruipeng Li,Mingyuan Ge,John Watt,Partha P. Mukherjee,David Mitlin,Yu-chen Karen Chen-Wiegart
标识
DOI:10.1002/anie.202412550
摘要
Abstract This study examines how current collector support chemistry (sodiophilic intermetallic Na 2 Te vs. sodiophobic baseline Cu) and electrodeposition rate affect microstructure of sodium metal and its solid electrolyte interphase (SEI). Capacity and current (6 mAh cm −2 , 0.5–3 mA cm −2 ) representative of commercially relevant mass loading in anode‐free sodium metal battery (AF‐SMBs) are analyzed. Synchrotron X‐ray nanotomography and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) are combined with cryogenic ion beam (cryo‐FIB) microscopy. Highlighted are major differences in film morphology, internal porosity, and crystallographic preferred orientation e.g. (110) vs. (100) and (211) with support and deposition rate. Within the SEI, sodium fluoride (NaF) is more prevalent with Te−Cu versus sodium hydride (NaH) and sodium hydroxide (NaOH) with baseline Cu. Due to competitive grain growth the preferred orientation of sodium crystallites depends on film thickness. Mesoscale modeling delineates the role of SEI (ionic conductivity, morphology) on electrodeposit growth and onset of electrochemical instability.
科研通智能强力驱动
Strongly Powered by AbleSci AI