肾细胞癌
接收机工作特性
鉴别诊断
医学
分割
人工智能
肿瘤分级
病理
内科学
放射科
计算机科学
癌症
作者
Siteng Chen,Xiyue Wang,Jun Zhang,Liren Jiang,Feng Gao,Jinxi Xiang,Sen Yang,Wei Yang,Junhua Zheng,Xiao Han
出处
期刊:Pathology
[Elsevier BV]
日期:2024-08-03
卷期号:56 (7): 951-960
被引量:1
标识
DOI:10.1016/j.pathol.2024.05.012
摘要
There is an urgent clinical demand to explore novel diagnostic and prognostic biomarkers for renal cell carcinoma (RCC). We proposed deep learning-based artificial intelligence strategies. The study included 1752 whole slide images from multiple centres. Based on the pixel-level of RCC segmentation, the diagnosis diagnostic model achieved an area under the receiver operating characteristic curve (AUC) of 0.977 (95% CI 0.969-0.984) in the external validation cohort. In addition, our diagnostic model exhibited excellent performance in the differential diagnosis of RCC from renal oncocytoma, which achieved an AUC of 0.951 (0.922-0.972). The grade
科研通智能强力驱动
Strongly Powered by AbleSci AI