亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Suicide Attempt Risk Prediction Models with Temporal Clinical Note Features

计算机科学 医学诊断 人工智能 机器学习 随机森林 集合(抽象数据类型) 数据集 数据挖掘 标识符 预测建模 自然语言处理 医学 程序设计语言 病理
作者
Kevin R. Krause,Sharon E. Davis,Zhijun Yin,Katherine Musacchio Schafer,S. Trent Rosenbloom,Colin G. Walsh
出处
期刊:Applied Clinical Informatics [Thieme Medical Publishers (Germany)]
卷期号:15 (05): 1107-1120 被引量:1
标识
DOI:10.1055/a-2411-5796
摘要

Abstract Objectives The objective of this study was to investigate the impact of enhancing a structured-data-based suicide attempt risk prediction model with temporal Concept Unique Identifiers (CUIs) derived from clinical notes. We aimed to examine how different temporal schemes, model types, and prediction ranges influenced the model's predictive performance. This research sought to improve our understanding of how the integration of temporal information and clinical variable transformation could enhance model predictions. Methods We identified modeling targets using diagnostic codes for suicide attempts within 30, 90, or 365 days following a temporally grouped visit cluster. Structured data included medications, diagnoses, procedures, and demographics, whereas unstructured data consisted of terms extracted with regular expressions from clinical notes. We compared models trained only on structured data (controls) to hybrid models trained on both structured and unstructured data. We used two temporalization schemes for clinical notes: fixed 90-day windows and flexible epochs. We trained and assessed random forests and hybrid long short-term memory (LSTM) neural networks using area under the precision recall curve (AUPRC) and area under the receiver operating characteristic, with additional evaluation of sensitivity and positive predictive value at 95% specificity. Results The training set included 2,364,183 visit clusters with 2,009 30-day suicide attempts, and the testing set contained 471,936 visit clusters with 480 suicide attempts. Models trained with temporal CUIs outperformed those trained with only structured data. The window-temporalized LSTM model achieved the highest AUPRC (0.056 ± 0.013) for the 30-day prediction range. Hybrid models generally showed better performance compared with controls across most metrics. Conclusion This study demonstrated that incorporating electronic health record-derived clinical note features enhanced suicide attempt risk prediction models, particularly with window-temporalized LSTM models. Our results underscored the critical value of unstructured data in suicidality prediction, aligning with previous findings. Future research should focus on integrating more sophisticated methods to continue improving prediction accuracy, which will enhance the effectiveness of future intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助dtsgydbd采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
40秒前
48秒前
ayjf发布了新的文献求助10
54秒前
博ge完成签到 ,获得积分10
55秒前
烟花应助令狐秋双采纳,获得10
59秒前
annasusu99完成签到,获得积分10
1分钟前
浮游应助annasusu99采纳,获得10
1分钟前
SH123完成签到 ,获得积分0
1分钟前
无风风完成签到 ,获得积分20
2分钟前
无风完成签到 ,获得积分10
2分钟前
aikeyan完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
ZoyaR完成签到,获得积分10
2分钟前
睿_发布了新的文献求助10
3分钟前
小二郎应助ZoyaR采纳,获得10
3分钟前
lovelife完成签到,获得积分10
3分钟前
睿_完成签到,获得积分10
3分钟前
鉴定为学计算学的完成签到,获得积分10
3分钟前
在水一方完成签到 ,获得积分10
3分钟前
一见憘完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
4分钟前
ChenWei发布了新的文献求助10
4分钟前
雪白鸿涛发布了新的文献求助10
4分钟前
小马甲应助雪白鸿涛采纳,获得10
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Ava应助不吃茄子的傻狍子采纳,获得10
5分钟前
宝贝丫头完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
令狐秋双发布了新的文献求助10
5分钟前
www发布了新的文献求助10
5分钟前
大模型应助雪白鸿涛采纳,获得10
6分钟前
David完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186552
求助须知:如何正确求助?哪些是违规求助? 4371719
关于积分的说明 13612510
捐赠科研通 4224326
什么是DOI,文献DOI怎么找? 2316961
邀请新用户注册赠送积分活动 1315610
关于科研通互助平台的介绍 1264829