Silicon Nanoparticles Improve Tomato Seed Germination More Effectively than Conventional Silicon under Salt Stress via Regulating Antioxidant System and Hormone Metabolism

发芽 抗氧化剂 盐(化学) 新陈代谢 激素 化学 纳米颗粒 盐度 脱落酸 园艺 植物 生物 生物化学 材料科学 纳米技术 有机化学 生态学 基因
作者
Tao-Jie Wang,Hao Long,Shengming Mao,Zeyu Jiang,Yuanyuan Liu,Yong He,Zhujun Zhu,Guochao Yan
出处
期刊:Horticulturae [Multidisciplinary Digital Publishing Institute]
卷期号:10 (8): 785-785 被引量:1
标识
DOI:10.3390/horticulturae10080785
摘要

Salt stress is one of the major environmental problems in agricultural production, severely limiting crops’ germination, growth and yield. Silicon (Si) is a widely recognized beneficial element in plants, which can promote plant growth especially under stressful conditions. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) have been shown to be a promising tool in nano-enabled agricultural production. However, the comparative effects of Si and SiNPs in alleviating salt stress in plants remain unclear, which would limit the application of SiNPs in agricultural practice. In this study, the effects of SiNPs and conventional Si (silicate) on tomato (a typical low-Si accumulator) seed germination, reactive oxygen species (ROS) content, antioxidant enzyme activity, and the expression of genes related to hormone metabolism were investigated. The results showed that SiNPs more effectively promoted seed germination percentage, fresh weight, and Si content than conventional Si. Simultaneously, SiNPs more significantly modulated the activities of antioxidant enzymes and alleviated salt stress-induced oxidative damage in tomato seeds. Moreover, exogenous SiNPs addition promoted the expression of genes responsible for gibberellin (GA) synthesis and abscisic acid (ABA) catabolism, while downregulating the expression of genes related to GA deactivation and ABA synthesis in tomato seeds under salt stress. Overall, our results indicate that SiNPs are more effective than conventional Si in promoting tomato seed germination under salt stress via modulating antioxidant enzyme activity and key endogenous hormone metabolism, which could be based on the higher accumulation of SiNPs in tomato seeds than conventional Si.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohen应助彭于晏采纳,获得10
1秒前
深情安青应助简单的发夹采纳,获得10
1秒前
乌冬面发布了新的文献求助10
1秒前
星流xx完成签到 ,获得积分10
1秒前
脑洞疼应助叶逐风采纳,获得10
2秒前
科研小哥发布了新的文献求助10
2秒前
4秒前
石会发完成签到,获得积分10
6秒前
万能图书馆应助乌龟娟采纳,获得10
7秒前
7秒前
8秒前
8秒前
潘Pdm完成签到,获得积分10
9秒前
han完成签到,获得积分10
9秒前
小小aa16完成签到,获得积分10
9秒前
10秒前
XHH1994发布了新的文献求助10
11秒前
11秒前
13秒前
SYLH应助文静元风采纳,获得10
14秒前
Ako完成签到,获得积分10
15秒前
15秒前
y13333完成签到,获得积分10
15秒前
1000发布了新的文献求助10
16秒前
ephore应助彭于晏采纳,获得30
18秒前
星流xx发布了新的文献求助60
19秒前
乌龟娟发布了新的文献求助10
21秒前
22秒前
情怀应助ypyue采纳,获得10
24秒前
喜悦又菡发布了新的文献求助10
24秒前
SCI的芷蝶发布了新的文献求助10
26秒前
29秒前
xiaozuo完成签到,获得积分20
31秒前
喜悦的不言完成签到,获得积分20
31秒前
田様应助乌冬面采纳,获得10
32秒前
yixing发布了新的文献求助10
33秒前
乌龟娟完成签到,获得积分10
35秒前
Hello应助Olivia采纳,获得10
37秒前
Hyg完成签到 ,获得积分10
40秒前
Owen应助tongke采纳,获得10
41秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899470
求助须知:如何正确求助?哪些是违规求助? 3444149
关于积分的说明 10833438
捐赠科研通 3168983
什么是DOI,文献DOI怎么找? 1750918
邀请新用户注册赠送积分活动 846342
科研通“疑难数据库(出版商)”最低求助积分说明 789162