Connector hubs in semantic network contribute to creative thinking.

心理学 认知心理学 语义网络 认知科学 创造力 沟通 社会心理学 人工智能 计算机科学
作者
Li He,Yoed N. Kenett,Kaixiang Zhuang,Jiangzhou Sun,Qunlin Chen,Jiang Qiu
出处
期刊:Journal of Experimental Psychology: General 被引量:1
标识
DOI:10.1037/xge0001675
摘要

Semantic memory offers a rich repository of raw materials (e.g., various concepts and connections between concepts) for creative thinking, represented as a semantic network. Similar to other networks, the semantic network exhibits a modular structure characterized by modules with dense internal connections and sparse connections between them. This organizational principle facilitates the routine storage and retrieval of information but may impede creativity. The present study investigated the effect of hub concepts with varying connection patterns on creative thinking from the perspective of a modular structured semantic network. By analyzing a large-scale semantic network, connector hubs (C-hubs) and provincial hubs (P-hubs) were identified based on their intra- and intermodule connections. These hubs were used as cue words in the alternative uses task, a widely used measure of creative thinking. Across four experiments, behavioral and neural evidence indicated that C-hubs facilitate the generation of more novel and remote ideas compared to P-hubs. However, this effect is predominantly observed in the early stage of the creative thinking process, involving changes in brain activation and functional connectivity in core regions of the default mode network and the frontoparietal network, including the dorsolateral prefrontal cortex, angular gyrus, and precuneus. Neural findings suggest that the superior performance of C-hubs relies on stronger interactions between automatic spreading activation, controlled semantic retrieval, and attentional regulation of salient information. These results provide insight into how concepts with varying semantic connection patterns facilitate and constrain different stages of the creative thinking process through the modular structure of semantic network. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
真实的火车完成签到,获得积分10
4秒前
李爱国应助LMH采纳,获得10
5秒前
肖恩完成签到,获得积分10
6秒前
Mryuan完成签到,获得积分10
6秒前
8秒前
高兴荔枝发布了新的文献求助10
8秒前
wangbq发布了新的文献求助10
10秒前
阿宝完成签到 ,获得积分0
12秒前
Misea发布了新的文献求助10
13秒前
无敌龙傲天完成签到 ,获得积分10
16秒前
dr0422完成签到 ,获得积分10
25秒前
思源应助Misea采纳,获得10
25秒前
文文文完成签到,获得积分10
26秒前
31秒前
qiao应助jackycas采纳,获得10
33秒前
37秒前
1762571452完成签到,获得积分10
38秒前
41秒前
qiao应助要懒死了hhh采纳,获得10
46秒前
快乐科研发布了新的文献求助10
46秒前
47秒前
共享精神应助高兴荔枝采纳,获得10
48秒前
小陆完成签到,获得积分10
48秒前
50秒前
迷人世开完成签到,获得积分0
51秒前
无辜的蜗牛完成签到 ,获得积分10
51秒前
ZXD1989完成签到 ,获得积分10
51秒前
斯文败类应助Tom的梦想采纳,获得10
55秒前
小陆发布了新的文献求助10
56秒前
脑洞疼应助快乐科研采纳,获得10
56秒前
56秒前
玄之又玄完成签到,获得积分10
56秒前
59秒前
Young4399完成签到 ,获得积分10
59秒前
大树完成签到 ,获得积分10
1分钟前
一只肥牛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549