数学
张量积
收敛速度
趋同(经济学)
放松(心理学)
张量(固有定义)
线性系统
应用数学
贪婪算法
数学优化
线性方程组
计算机科学
数学分析
纯数学
社会心理学
经济
频道(广播)
经济增长
计算机网络
心理学
标识
DOI:10.1145/3577117.3577127
摘要
Solving large system of tensor linear equations is a fundamental problem in mathematics. This paper proposes a sampling tensor greedy Kaczmarz method (tGK) to solve large-scale linear systems with a t-product structure by introducing an effective greedy criterion, which eliminates the entry with the largest residual in the submatrix system per iteration. Then a relaxed tensor greedy Kaczmarz method (tRGK (ω)) is obtained by introducing the relaxation parameter ω to tGK, which can effectively change the convergence rate. The linear convergence of the two methods is guaranteed when the tensor linear system is consistent. Several experiments show that the methods designed in this paper converge faster compared with tensor randomized Kaczmarz (tRK). Moreover, selecting appropriate parameters ω can improve the convergence rate of tGK.
科研通智能强力驱动
Strongly Powered by AbleSci AI