反推
控制理论(社会学)
跟踪误差
非线性系统
计算机科学
弹道
人工神经网络
振动
机器人
自适应控制
控制(管理)
人工智能
物理
量子力学
天文
作者
Xinyu Song,Lin Zhao,Guozeng Cui
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2023-06-02
卷期号:70 (11): 4143-4147
被引量:3
标识
DOI:10.1109/tcsii.2023.3282208
摘要
This brief introduces a finite-time tracking control algorithm for robot manipulator systems in a random vibration environment, which addresses the challenges of parameter uncertainty and input saturation. The algorithm combines command filtered adaptive backstepping with neural networks to approximate unknown nonlinear dynamics and avoid the singularity problem of traditional finite-time backstepping methods. An error compensation mechanism based on the fractional power function is also introduced to improve trajectory tracking accuracy, and the algorithm is shown to ensure practical finite-time stability in mean square. Numerical simulations demonstrate that the effectiveness of proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI