已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms

分割 计算机科学 人工智能 预处理器 条件随机场 残余物 计算机视觉 图像分割 模式识别(心理学) 路径(计算) 算法 程序设计语言
作者
Nan Mu,Zonghan Lyu,Mostafa Rezaeitaleshmahalleh,Jinshan Tang,Jingfeng Jiang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:84: 102697-102697 被引量:26
标识
DOI:10.1016/j.media.2022.102697
摘要

Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images. The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results. Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed. The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
拼搏的败完成签到 ,获得积分10
1秒前
h0jian09完成签到,获得积分10
1秒前
3秒前
阿Q完成签到,获得积分10
4秒前
ljy2015完成签到 ,获得积分10
4秒前
桥洞居士发布了新的文献求助20
5秒前
5秒前
oleskarabach发布了新的文献求助10
5秒前
冯老三完成签到 ,获得积分10
6秒前
半夏完成签到 ,获得积分10
6秒前
yejian发布了新的文献求助10
6秒前
Banana发布了新的文献求助10
7秒前
会发光的小灰灰完成签到,获得积分10
8秒前
西门浩宇完成签到 ,获得积分10
10秒前
3D完成签到,获得积分10
11秒前
32429606完成签到 ,获得积分10
11秒前
Q哈哈哈发布了新的文献求助10
12秒前
英姑应助白巧小丸子采纳,获得10
12秒前
深情的鞯完成签到,获得积分10
13秒前
LANER完成签到 ,获得积分10
19秒前
SciGPT应助Q哈哈哈采纳,获得10
19秒前
888关闭了888文献求助
19秒前
饱满的千易完成签到,获得积分10
20秒前
加油杨完成签到 ,获得积分10
22秒前
shaylie完成签到 ,获得积分10
23秒前
zheng完成签到,获得积分20
23秒前
诸葛御风应助小铭采纳,获得30
23秒前
tivyg'lk完成签到,获得积分10
24秒前
Jasper应助Q哈哈哈采纳,获得10
24秒前
25秒前
26秒前
27秒前
27秒前
心随以动完成签到 ,获得积分10
28秒前
吴谷杂粮完成签到 ,获得积分10
29秒前
激昂的如柏完成签到,获得积分10
32秒前
jillian发布了新的文献求助10
32秒前
33秒前
情怀应助Q哈哈哈采纳,获得10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798340
求助须知:如何正确求助?哪些是违规求助? 3343790
关于积分的说明 10317628
捐赠科研通 3060529
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296