亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Siamese multiscale residual feature fusion network for aero-engine bearing fault diagnosis under small-sample condition

断层(地质) 残余物 计算机科学 模式识别(心理学) 样品(材料) 方位(导航) 特征(语言学) 数据挖掘 人工智能 人工神经网络 特征提取 算法 地质学 哲学 色谱法 地震学 语言学 化学
作者
Zhaoguo Hou,Huawei Wang,Shaolan Lv,Minglan Xiong,Ke Peng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (3): 035109-035109 被引量:17
标识
DOI:10.1088/1361-6501/aca044
摘要

Abstract Implementing condition monitoring and fault diagnosis of aero-engine bearings is crucial to ensure that aircraft operate safely and reliably. In engineering practice, the fault data for aero-engine bearings are extremely limited. However, the traditional fault diagnosis methods have two shortcomings under extremely small sample conditions: (1) they have limited diagnostic performance and generalization ability, and (2) they do not mine fault information sufficiently or efficiently. This article proposes a Siamese multiscale residual feature fusion network (SMSRFFN) for aero-engine bearing fault diagnosis under small-sample conditions to overcome the weaknesses above. In the proposed SMSRFFN, the training samples are first paired according to the matching rules to realize the expansion of the sample size. Second, a multiscale residual feature extraction network (MSRFEN) is constructed to excavate the fault features of different scales and speed up the convergence speed of the network. Then, a multiscale attention mechanism feature fusion module (MSAMFFM) is designed to achieve efficient fusion of fault features at different scales. Finally, the distance of the input sample is measured based on the fused deep feature representation to identify the fault state of the aero-engine bearing. The proposed SMSRFFN is evaluated using three bearing fault data and also compared with some state-of-the-art small-sample diagnostic methods. The experimental results demonstrate the effectiveness and superiority of the proposed SMSRFFN in mining fault information and improving diagnosis accuracy under extremely small sample conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助尼克狐尼克采纳,获得10
2秒前
24秒前
李健应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得30
28秒前
科研通AI2S应助科研通管家采纳,获得30
28秒前
44秒前
1分钟前
1分钟前
1分钟前
2分钟前
fsznc完成签到 ,获得积分0
2分钟前
科研通AI6应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
CodeCraft应助bobo采纳,获得10
3分钟前
3分钟前
Hello应助尼克狐尼克采纳,获得10
3分钟前
白嫖论文完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
烟花应助科研通管家采纳,获得10
4分钟前
4分钟前
Virtual应助frl采纳,获得10
4分钟前
5分钟前
5分钟前
fufufu123完成签到 ,获得积分10
6分钟前
wangfaqing942完成签到 ,获得积分10
6分钟前
李爱国应助Xuancheng_SINH采纳,获得10
6分钟前
6分钟前
6分钟前
digger2023完成签到 ,获得积分10
6分钟前
Nichols完成签到,获得积分10
6分钟前
Una完成签到,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
渔夫发布了新的文献求助10
7分钟前
7分钟前
8分钟前
yindi1991完成签到 ,获得积分10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4377228
求助须知:如何正确求助?哪些是违规求助? 3872894
关于积分的说明 12068235
捐赠科研通 3515980
什么是DOI,文献DOI怎么找? 1929414
邀请新用户注册赠送积分活动 971024
科研通“疑难数据库(出版商)”最低求助积分说明 869673