Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:40
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一人完成签到,获得积分10
1秒前
那只是个纸月亮完成签到,获得积分10
3秒前
害羞便当完成签到,获得积分10
3秒前
科研通AI2S应助Dorren采纳,获得10
5秒前
yyds完成签到,获得积分10
6秒前
犬狗狗完成签到 ,获得积分10
6秒前
7秒前
石子完成签到 ,获得积分10
7秒前
NiNi完成签到,获得积分20
7秒前
小四喜完成签到,获得积分10
8秒前
Gideon完成签到,获得积分10
9秒前
okisseven7完成签到,获得积分10
9秒前
zgaolei完成签到,获得积分10
11秒前
11秒前
犹豫的若男完成签到,获得积分10
11秒前
咎青文完成签到,获得积分10
11秒前
gg完成签到,获得积分10
12秒前
风雨霖霖完成签到 ,获得积分10
12秒前
13秒前
研了个研完成签到,获得积分10
13秒前
韦诗涵完成签到,获得积分10
14秒前
darling完成签到,获得积分10
14秒前
开朗的伊完成签到,获得积分10
15秒前
青阳完成签到,获得积分10
15秒前
YXH发布了新的文献求助10
16秒前
小芒冰茶完成签到,获得积分10
17秒前
好嗨哟完成签到,获得积分10
19秒前
HWJ完成签到,获得积分10
19秒前
19秒前
20秒前
太吾墨完成签到,获得积分0
20秒前
义气莫茗完成签到 ,获得积分10
21秒前
无花果应助风清扬采纳,获得10
21秒前
150350完成签到 ,获得积分10
22秒前
执着的怜珊完成签到,获得积分10
23秒前
YXH完成签到,获得积分10
24秒前
jeep先生发布了新的文献求助10
24秒前
25秒前
yyy发布了新的文献求助10
25秒前
西早07完成签到,获得积分10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695