Classification of cheese varieties from Switzerland using machine learning methods: Free volatile carboxylic acids

机器学习 人工智能 数学 特征(语言学) 随机森林 计算机科学 林业 地理 语言学 哲学
作者
Marie‐Therese Fröhlich‐Wyder,H Bachmann,Remo S. Schmidt
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier]
卷期号:184: 115095-115095 被引量:12
标识
DOI:10.1016/j.lwt.2023.115095
摘要

In the first two decades of the 21st century, a wide range of analyses, including free volatile carboxylic acids (FVCAs), endeavoured to describe 10 different cheese varieties from Switzerland. The aim of the present work was to investigate whether these 10 cheese varieties could be classified by means of supervised machine learning (ML) techniques, as well as to analyse the importance of the features FVCAs in order to understand their role in characterising cheese varieties. Special emphasis was placed on SHAP values (SHapley Additive exPlanations). In total, 241 cheese samples were classified using different ML algorithms with the help of the PyCaret library; at least 90% were correctly classified with two ensemble algorithms: Extra Trees and Random Forest. The fewest misclassifications were observed for Emmentaler AOP, Raclette du Valais AOP, and Formaggio d'Alpe Ticinese DOP, whereas most misclassifications occurred between Le Gruyère AOP and Berner Alpkäse AOP. The most important feature was C1, followed by C3, C6, and iso-C4, with iso-C6 being the least important after C2 and C4. By means of the interpretation of SHAP values applied as a differentiating feature, key FVCAs were identified for most cheese varieties. This study represents a first step towards improved differentiation of cheese varieties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
刚刚
2秒前
刘子豪完成签到,获得积分10
2秒前
3秒前
夜雨发布了新的文献求助10
3秒前
爆米花应助nine2652采纳,获得10
3秒前
孤央发布了新的文献求助10
4秒前
羊羔肉完成签到,获得积分10
4秒前
佳怡完成签到 ,获得积分10
4秒前
4秒前
虚生花发布了新的文献求助30
5秒前
7秒前
Eatanicecube完成签到,获得积分10
7秒前
7秒前
8秒前
净净子完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
LewisAcid应助笨笨葶采纳,获得20
11秒前
11秒前
超人不会飞完成签到 ,获得积分10
11秒前
元元堡堡发布了新的文献求助10
12秒前
MOREMO发布了新的文献求助30
12秒前
852应助QinQin采纳,获得10
13秒前
对方正在输入完成签到 ,获得积分10
14秒前
14秒前
研友_VZG7GZ应助姜月采纳,获得10
14秒前
小龙锅完成签到,获得积分10
15秒前
16秒前
18秒前
超帅的薯片完成签到,获得积分10
19秒前
ding应助帆帆帆采纳,获得10
20秒前
hhee完成签到,获得积分10
20秒前
nininini发布了新的文献求助10
20秒前
20秒前
bkagyin应助Zephyr采纳,获得10
20秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
古琴残梦发布了新的文献求助10
24秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655