亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels

聚类分析 共识聚类 数据挖掘 层次聚类 计算机科学 分拆(数论) 单连锁聚类 稳健性(进化) 相关聚类 星团(航天器) 模糊聚类 CURE数据聚类算法 相似性度量 人工智能 模式识别(心理学) 数学 基因 组合数学 生物化学 化学 程序设计语言
作者
Qirui Huang,Rui Gao,Hoda Akhavan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:136: 109255-109255 被引量:25
标识
DOI:10.1016/j.patcog.2022.109255
摘要

Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助twk采纳,获得10
35秒前
andrele应助科研通管家采纳,获得10
1分钟前
乾坤侠客LW完成签到,获得积分10
1分钟前
1分钟前
暖暖完成签到,获得积分10
1分钟前
北辰zdx完成签到,获得积分10
2分钟前
xiaxia关注了科研通微信公众号
2分钟前
cdercder应助北辰zdx采纳,获得30
2分钟前
xiaxia完成签到,获得积分10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
Banana完成签到,获得积分20
3分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
壮观的谷冬完成签到 ,获得积分10
3分钟前
打打应助XX采纳,获得10
4分钟前
XX完成签到,获得积分10
4分钟前
4分钟前
4分钟前
站我发布了新的文献求助10
4分钟前
CipherSage应助站我采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
LRxxx完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI5应助y234j788采纳,获得10
5分钟前
秀丽焦完成签到 ,获得积分10
5分钟前
6分钟前
英俊的铭应助wack采纳,获得10
6分钟前
Hillson完成签到,获得积分10
6分钟前
7分钟前
Kate发布了新的文献求助10
7分钟前
科研通AI2S应助LIN采纳,获得20
7分钟前
科研小狗完成签到 ,获得积分20
7分钟前
西蓝花香菜完成签到 ,获得积分10
8分钟前
8分钟前
y234j788发布了新的文献求助10
8分钟前
月亮完成签到 ,获得积分10
8分钟前
KaK发布了新的文献求助10
8分钟前
8分钟前
KaK完成签到,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468