A physics‐informed deep learning model for MRI brain motion correction

运动(物理) 人工智能 计算机科学 物理
作者
Mojtaba Safari,Shansong Wang,Zach Eidex,Richard Qiu,Chih‐Wei Chang,David S. Yu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:52 (12): e70197-e70197
标识
DOI:10.1002/mp.70197
摘要

Abstract Background Magnetic resonance imaging (MRI) is an essential brain imaging tool, but its long acquisition times make it highly susceptible to motion artifacts that can degrade diagnostic quality. Purpose This work aims to develop and evaluate a novel physics‐informed motion correction network, termed PI‐MoCoNet, which leverages complementary information from both the spatial and k ‐space domains. The primary goal is to robustly remove motion artifacts from high‐resolution brain MRI images without explicit motion parameter estimation, thereby preserving image fidelity and enhancing diagnostic reliability. Materials and Methods PI‐MoCoNet is designed as a dual‐network framework consisting of a motion detection network and a motion correction network. The motion detection network employs a U‐net architecture to identify corrupted k ‐space lines using a spatial averaging module, thereby reducing prediction uncertainty. The correction network, inspired by recent advances in U‐net architectures and incorporating Swin Transformer blocks, reconstructs motion‐corrected images by leveraging three loss components: the reconstruction loss (), a learned perceptual image patch similarity (LPIPS) loss, and a data consistency loss () that enforces fidelity in the k ‐space domain. Realistic motion artifacts were simulated by perturbing phase encoding lines with random rigid transformations. The method was evaluated on two public datasets (IXI and MR‐ART). Comparative assessments were made against baseline models, including Pix2Pix GAN, CycleGAN, and a conventional U‐net, using quantitative metrics such as peak signal‐to‐noise ratio(PSNR), structural similarity index measure (SSIM), and normalized mean square error (NMSE). Results PI‐MoCoNet demonstrated significant improvements over competing methods across all levels of motion artifacts. On the IXI dataset, for minor motion artifacts, PSNR improved from 34.15 dB in the motion‐corrupted images to 45.95 dB after correction, SSIM increased from 0.87 to 1.00, and NMSE was reduced from 0.55% to 0.04%. For moderate artifacts, PSNR increased from 30.23 to 42.16 dB, SSIM from 0.80 to 0.99, and NMSE from 1.32% to 0.09%. In the case of heavy artifacts, PSNR improved from 27.99 to 36.01 dB, SSIM from 0.75 to 0.97, and NMSE decreased from 2.21% to 0.36%. On the MR‐ART dataset, PSNR values increased from 23.15 to 33.01 dB for low artifact levels and from 21.23 to 31.72 dB for high artifact levels; concurrently, SSIM improved from 0.72 to 0.87 and from 0.63 to 0.83, while NMSE decreased from 10.08% to 6.24% and from 14.77% to 8.32%, respectively. An ablation study further confirmed that incorporating both data consistency and perceptual losses led to an approximate 1 dB gain in PSNR and a reduction of 0.17% in NMSE compared to using the reconstruction loss alone. Conclusions PI‐MoCoNet is a robust, physics‐informed framework for mitigating brain motion artifacts in MRI. By successfully integrating spatial and k ‐space information, it enhances image quality and reduces the likelihood of repeat imaging sessions due to motion‐induced degradation. Its superior performance compared to existing methods underscores its clinical applicability, especially in scenarios where patient motion is inevitable, thus improving patient comfort, diagnostic reliability, and overall treatment planning efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上下完成签到 ,获得积分10
1秒前
2秒前
hsiuf完成签到,获得积分10
3秒前
Getlogger完成签到,获得积分10
3秒前
东风完成签到,获得积分10
4秒前
夏天发布了新的文献求助10
4秒前
香蕉觅云应助Wayne采纳,获得10
5秒前
6秒前
6秒前
8秒前
和谐小霸王完成签到,获得积分10
8秒前
9秒前
dujinjun完成签到,获得积分10
9秒前
X_yyy完成签到,获得积分10
11秒前
所所应助良仑采纳,获得10
11秒前
11秒前
新洸完成签到 ,获得积分10
12秒前
Jerry完成签到 ,获得积分10
12秒前
偏偏海完成签到,获得积分10
12秒前
mumuaidafu完成签到 ,获得积分10
13秒前
风雅完成签到,获得积分10
13秒前
梨子发布了新的文献求助10
14秒前
14秒前
Cai完成签到,获得积分10
15秒前
清爽达完成签到 ,获得积分10
15秒前
阿紫吖完成签到,获得积分10
16秒前
liguanyu1078完成签到,获得积分10
16秒前
剑舞红颜笑完成签到 ,获得积分10
17秒前
17秒前
谢谢谢谢谢谢谢谢完成签到 ,获得积分10
17秒前
misa完成签到 ,获得积分10
18秒前
能干的新筠完成签到,获得积分10
18秒前
20秒前
guozizi完成签到,获得积分10
20秒前
hhh完成签到,获得积分10
20秒前
20秒前
糖糖糖唐完成签到,获得积分10
20秒前
21秒前
逍遥子完成签到,获得积分10
21秒前
珊珊发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510188
求助须知:如何正确求助?哪些是违规求助? 4604859
关于积分的说明 14490437
捐赠科研通 4539850
什么是DOI,文献DOI怎么找? 2487726
邀请新用户注册赠送积分活动 1470004
关于科研通互助平台的介绍 1442484