已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing co-pyrolysis process of biomass and coal using machine learning insights and Shapley additive explanations based on cooperative game theory

生物量(生态学) 过程(计算) 热解 博弈论 工艺工程 环境科学 生化工程 废物管理 计算机科学 经济 数理经济学 工程类 地质学 海洋学 操作系统
作者
Quang Dung Le,Prabhu Paramasivam,Jasgurpreet Singh Chohan,Ranjna Sirohi,Văn Hùng Bùi,Jerzy Kowalski,Huu Cuong Le,Việt Dũng Trần
出处
期刊:Energy & Environment [SAGE Publishing]
标识
DOI:10.1177/0958305x251315408
摘要

The co-pyrolysis process is an essential method for energy extraction from waste biomass and coal although the co-pyrolysis technology of biomass and coal presents a complex engineering challenge. To address these challenges, modern data-driven ensemble and tree-based machine learning approaches offer a promising solution. This study provides a comprehensive analysis of various machine learning techniques, including linear regression (LR), decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and adaptive boosting (AdaBoost) to predict the outcome models of pyrolysis oil yield, syngas yield, char yield, and syngas lower heating value from co-pyrolysis of biomass and coal. The models are evaluated using different statistical metrics. The DT-based pyrolysis oil yield model outperformed the other four models (LR, RF, XGBoost, and AdaBoost) in predicting pyrolysis oil with robust accuracy, achieving an R 2 of 0.999 and a mean squared error (MSE) close to zero during the model training phase. Similarly, the DT-based syngas yield model showed a high R 2 of 0.999 and near-zero MSE while the based char yield model excelled the others with a high R 2 of 0.999 and negligible MSE during the model training phase. In the subsequent phase, explainable artificial intelligence-based Shapley additive explanation (SHAP) values were estimated for feature importance analysis. The SHAP analysis identified key features for pyrolysis oil and syngas yield, with biomass blending ratio and reaction time being the most crucial, while reaction time and temperature were the most important for the syngas LHV model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qin关注了科研通微信公众号
1秒前
2秒前
不语完成签到,获得积分10
2秒前
5秒前
豆子发布了新的文献求助10
9秒前
霸气的惜寒完成签到,获得积分10
11秒前
yinlao完成签到,获得积分10
11秒前
李健的小迷弟应助YOUNG采纳,获得10
12秒前
盛夏如花发布了新的文献求助10
13秒前
卡琳完成签到 ,获得积分10
13秒前
13秒前
阿司匹林完成签到 ,获得积分10
17秒前
BA1发布了新的文献求助10
18秒前
开开心心木头人完成签到 ,获得积分10
18秒前
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
wenhaw应助科研通管家采纳,获得10
19秒前
LMNg6n应助科研通管家采纳,获得30
19秒前
mkljl完成签到 ,获得积分10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得20
19秒前
豆子完成签到,获得积分10
22秒前
充电宝应助tudouyu采纳,获得10
25秒前
开开心心木头人关注了科研通微信公众号
25秒前
善学以致用应助tyty采纳,获得10
28秒前
tyty完成签到,获得积分10
35秒前
39秒前
科研通AI5应助WANG.采纳,获得10
40秒前
科研小学生完成签到,获得积分10
41秒前
英俊的铭应助下雨会打伞采纳,获得10
42秒前
tyty发布了新的文献求助10
42秒前
科研通AI5应助985博士采纳,获得10
43秒前
shanmao完成签到 ,获得积分10
44秒前
45秒前
46秒前
qin发布了新的文献求助10
51秒前
青花发布了新的文献求助10
52秒前
yowar发布了新的文献求助10
53秒前
科目三应助曲幻梅采纳,获得10
54秒前
优雅苑睐完成签到,获得积分10
54秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819829
求助须知:如何正确求助?哪些是违规求助? 3362733
关于积分的说明 10418535
捐赠科研通 3080999
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768494